Show simple item record

Cascades, backscatter and conservation in numerical models of two‐dimensional turbulence

dc.contributor.authorThuburn, Johnen_US
dc.contributor.authorKent, Jamesen_US
dc.contributor.authorWood, Nigelen_US
dc.date.accessioned2014-05-21T18:02:33Z
dc.date.available2015-04-01T19:59:05Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationThuburn, John; Kent, James; Wood, Nigel (2014). "Cascades, backscatter and conservation in numerical models of two‐dimensional turbulence." Quarterly Journal of the Royal Meteorological Society 140(679): 626-638.en_US
dc.identifier.issn0035-9009en_US
dc.identifier.issn1477-870Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106663
dc.description.abstractThe equations governing atmospheric flow imply transfers of energy and potential enstrophy between scales. Accurate simulation of turbulent flow requires that numerical models, which have finite resolution and truncation errors, adequately capture these interscale transfers, particularly between resolved and unresolved scales. It is therefore important to understand how accurately these transfers are modelled in the presence of scale‐selective dissipation or other forms of subgrid model. Here, the energy and enstrophy cascades in numerical models of two‐dimensional turbulence are investigated using the barotropic vorticity equation. Energy and enstrophy transfers in spectral space due to truncated scales are calculated for a high‐resolution reference solution and for several explicit and implicit subgrid models at coarser resolution. The reference solution shows that enstrophy and energy are removed from scales very close to the truncation scale and energy is transferred (backscattered) into the large scales. Some subgrid models are able to capture the removal of enstrophy from small scales, though none are scale‐selective enough; however, none are able to capture accurately the energy backscatter. We propose a scheme that perturbs the vorticity field at each time step by the addition of a particular vorticity pattern derived by filtering the predicted vorticity field. Although originally conceived as a parametrization of energy backscatter, this scheme is best interpreted as an energy ‘fixer’ that attempts to repair the damage to the energy spectrum caused by numerical truncation error and an imperfect subgrid model. The proposed scheme improves the energy and enstrophy behaviour of the solution and, in most cases, slightly reduces the root mean square vorticity errors.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherCascadeen_US
dc.subject.otherBackscatteren_US
dc.titleCascades, backscatter and conservation in numerical models of two‐dimensional turbulenceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, UKen_US
dc.contributor.affiliationotherMet Office, FitzRoy Road, Exeter UKen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106663/1/2166_ftp.pdf
dc.identifier.doi10.1002/qj.2166en_US
dc.identifier.sourceQuarterly Journal of the Royal Meteorological Societyen_US
dc.identifier.citedreferenceRhines PB. 1979. Geostrophic turbulence. Annu. Rev. Fluid Mech. 11: 401 – 441.en_US
dc.identifier.citedreferenceKoshyk JN, Boer GJ. 1994. Parameterization of dynamical subgrid‐scale processes in a spectral GCM. J. Atmos. Sci. 52: 965 – 976.en_US
dc.identifier.citedreferenceKraichnan RH. 1975. Statistical dynamics of two‐dimensional flow. J. Fluid Mech. 67: 155 – 175.en_US
dc.identifier.citedreferenceKraichnan RH. 1976. Eddy viscosity in 2 and 3 dimensions. J. Atmos. Sci. 33: 1521 – 1536.en_US
dc.identifier.citedreferenceLeonard BP, MacVean MK, Lock AP. 1993. Positivity‐preserving numerical schemes for multidimensional advection. NASA Technical Memorandum 106055.en_US
dc.identifier.citedreferenceLin SJ. 2004. A ‘vertically Lagrangian’ finite‐volume dynamical core for global models. Mon. Weather Rev. 132: 2293 – 2307.en_US
dc.identifier.citedreferenceMargolin LG, Rider WJ. 2002. A rationale for implicit turbulence modeling. Int. J. Numer. Meth. Fluids 39: 821 – 841.en_US
dc.identifier.citedreferenceMargolin LG, Rider WJ. 2007. Numerical regularization: the numerical analysis of implicit subgrid models. In Implicit Large‐Eddy Simulation, Grinstein FF, Margolin LG, Rider WJ (eds). Cambridge University Press: Cambridge, UK; 195 – 221.en_US
dc.identifier.citedreferenceMason PJ, Thomson DJ. 1992. Stochastic backscatter in large‐eddy simulations of boundary layers. J. Fluid Mech. 242: 51 – 78.en_US
dc.identifier.citedreferenceNeale RB, Chen C‐C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque J‐F, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Cameron‐Smith P, Collins WD, Iacono MJ, Rasch PJ, Taylor MA. 2010. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Note NCAR/TN‐486 + STR.en_US
dc.identifier.citedreferencePietarila Graham J, Ringler T. 2013. A framework for the evaluation of turbulence closures used in mesoscale ocean large‐eddy simulations. Ocean Model. (In press).en_US
dc.identifier.citedreferenceRobert A. 1966. The integration of a low order spectral form of the primitive meteorological equations. J. Meteorol. Soc. Japan 44: 237 – 245.en_US
dc.identifier.citedreferenceSadourny R, Basdevant C. 1985. Parameterization of subgrid scale barotropic and baroclinic eddies in quasi‐geostrophic models: anticipated potential vorticity method. J. Atmos. Sci. 42: 1353 – 1363.en_US
dc.identifier.citedreferenceSalmon R. 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press: Oxford.en_US
dc.identifier.citedreferenceShutts G. 2005. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131: 3079 – 3102.en_US
dc.identifier.citedreferenceSmagorinsky J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather. Rev. 91: 99 – 164.en_US
dc.identifier.citedreferenceThuburn J. 1996. Multidimensional flux‐limited advection schemes. J. Comput. Phys. 123: 74 – 83.en_US
dc.identifier.citedreferenceThuburn J. 2008. Some conservation issues for the dynamical cores of NWP and climate models. J. Comput. Phys. 227: 3715 – 3730.en_US
dc.identifier.citedreferenceWilliamson DL. 2007. The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Japan 85B: 241 – 269.en_US
dc.identifier.citedreferenceWilliamson DL, Olson JG, Jablonowski J. 2009. Two dynamical core formulation flaws exposed by a baroclinic instability test case. Mon. Weather Rev. 137: 790 – 796.en_US
dc.identifier.citedreferenceWGNE. 2003. WMO Atmospheric Research and Environment Programme. Report No. 18, CAS/JSC Working Group on Numerical Experimentation.en_US
dc.identifier.citedreferenceArakawa A. 1966. Computational design for long‐term numerical integration of the equations of fluid motion: two‐dimensional incompressible flow. Part I. J. Comput. Phys. 1: 119 – 143.en_US
dc.identifier.citedreferenceAsselin R. 1972. Frequency filter for time integrations. Mon. Weather Rev. 100: 487 – 490.en_US
dc.identifier.citedreferenceBatchelor GK. 1969. Computation of the energy spectrum in homogeneous two‐dimensional turbulence. Phys. Fluids 12: II – 233.en_US
dc.identifier.citedreferenceBerner J, Shutts GJ, Leutbecher M, Palmer TN. 2009. A spectral stochastic kinetic energy backscatter scheme and its impact on flow‐dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66: 603 – 625.en_US
dc.identifier.citedreferenceBowler NE, Arribas A, Beare SE, Mylne KR, Shutts GJ. 2009. The Local ETKF and SKEB: upgrades to the MOGREPS short‐range ensemble prediction system. Q. J. R. Meteorol. Soc. 135: 767 – 776.en_US
dc.identifier.citedreferenceBrown AR, MacVean MK, Mason PJ. 2000. The effects of numerical dissipation in large eddy simulations. J. Atmos. Sci. 57: 3337 – 3348.en_US
dc.identifier.citedreferenceChen S, Ecke RE, Eyink GL, Wang X, Xiao Z. 2003. Physical mechanism of the two‐dimensional enstrophy cascade. Phys. Rev. Lett. 91: 215401‐1 – 215401‐4.en_US
dc.identifier.citedreferenceChen S, Ecke RE, Eyink GL, Wang X, Xiao Z. 2006. Physical mechanism of the two‐dimensional inverse energy cascade. Phys. Rev. Lett. 96: 084502‐1 – 084502‐4.en_US
dc.identifier.citedreferenceDomaradski JA, Saiki EM. 1997. Backscatter models for large‐eddy simulations. Theoret. Comput. Fluid Dynamics 9: 75 – 83.en_US
dc.identifier.citedreferenceDurran DR. 1999. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer: Berlin.en_US
dc.identifier.citedreferenceFrederiksen JS, Kepert SM. 2006. Dynamical subgrid‐scale parameterizations from direct numerical simulations. J. Atmos. Sci. 63: 3006 – 3019.en_US
dc.identifier.citedreferenceGrinstein FF, Margolin LG, Rider W. 2007. Implicit Large Eddy Simulation. Cambridge University Press: Cambridge, UK.en_US
dc.identifier.citedreferenceJablonowski C, Williamson DL. 2011. The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. In Numerical Techniques for Global Atmospheric Models, Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds). Springer: Berlin; 381 – 493.en_US
dc.identifier.citedreferenceKent J, Thuburn J, Wood N. 2012. Assessing implicit large eddy simulation for two‐dimensional flow. Q. J. R. Meteorol. Soc. 138: 365 – 376.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.