Show simple item record

Martian ionospheric responses to dynamic pressure enhancements in the solar wind

dc.contributor.authorMa, Y. J.en_US
dc.contributor.authorFang, X.en_US
dc.contributor.authorNagy, A. F.en_US
dc.contributor.authorRussell, C. T.en_US
dc.contributor.authorToth, Gaboren_US
dc.date.accessioned2014-05-21T18:02:35Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-02en_US
dc.identifier.citationMa, Y. J.; Fang, X.; Nagy, A. F.; Russell, C. T.; Toth, Gabor (2014). "Martian ionospheric responses to dynamic pressure enhancements in the solar wind." Journal of Geophysical Research: Space Physics 119(2): 1272-1286.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106668
dc.description.abstractAs a weakly magnetized planet, Mars ionosphere/atmosphere interacts directly with the shocked solar wind plasma flow. Even though many numerical studies have been successful in reproducing numerous features of the interaction process, these earlier studies focused mainly on interaction under steady solar wind conditions. Recent observations suggest that plasma escape fluxes are significantly enhanced in response to solar wind dynamic pressure pulses. In this study, we focus on the response of the ionosphere to pressure enhancements in the solar wind. Through modeling of two idealized events using a magnetohydrodynamics model, we find that the upper ionosphere of Mars responds almost instantaneously to solar wind pressure enhancements, while the collision dominated lower ionosphere (below ~150 km) does not have noticeable changes in density. We also find that ionospheric perturbations in density, magnetic field, and velocity can last more than an hour after the solar wind returns to the quiet conditions. The topside ionosphere forms complicated transient shapes in response, which may explain unexpected ionospheric behaviors in recent observations. We also find that ionospheric escape fluxes do not correlate directly with simultaneous solar wind dynamic pressure. Rather, their intensities also depend on the earlier solar wind conditions. It takes a few hours for the ionospheric/atmospheric system to reach a new quasi‐equilibrium state. Key Points This paper studies ionospheric responses to solar wind pressure enhancements The ionosphere forms complicated transient shapes when solar wind varies The escape fluxes depend on both simultaneous and earlier solar wind conditionsen_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSolar Wind Variationsen_US
dc.subject.otherResponsesen_US
dc.subject.otherMartian Ionosphereen_US
dc.titleMartian ionospheric responses to dynamic pressure enhancements in the solar winden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106668/1/jgra50802.pdf
dc.identifier.doi10.1002/2013JA019402en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tóth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma ( 2010b ), Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields, J. Geophys. Res., 115, A04308, doi: 10.1029/2009JA014929.en_US
dc.identifier.citedreferenceFang, X., S. W. Bougher, R. E. Johnson, J. G. Luhmann, Y. Ma, Y.‐C. Wang, and M. W. Liemohn ( 2013 ), The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions, Geophys. Res. Lett., 40, 1922 – 1927, doi: 10.1002/grl.50415.en_US
dc.identifier.citedreferenceFutaana, Y., et al. ( 2008 ), Mars Express and Venus Express multi‐point observations of geoeffective solar flare events in December 2006, Planet. Space Sci., 56, 873 – 880, doi: 10.1016/j.pss.2007.10.014.en_US
dc.identifier.citedreferenceHarnett, E. M. ( 2009 ), High‐resolution multifluid simulations of flux ropes in the Martian magnetosphere, J. Geophys. Res., 114, A01208, doi: 10.1029/2008JA013648.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2006 ), Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111, A09213, doi: 10.1029/2006JA011724.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2007 ), High resolution multi‐fluid simulations of the plasma environment near the Martian magnetic anomalies, J. Geophys. Res., 112, A05207, doi: 10.1029/2006JA012001.en_US
dc.identifier.citedreferenceKallio, E., K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen ( 2009 ), Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions, Icarus, 206 ( 1 ), 152 – 163.en_US
dc.identifier.citedreferenceKallio, E., K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen ( 2010 ), Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions, Icarus, 206 ( 1 ), 152 – 163, doi: 10.1016/j.icarus.2009.05.015.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.‐A. Sauvaud, and M. Yamauchi ( 2008 ), Solar forcing and planetary ion escape from Mars, Geophys. Res. Lett., 35, L09203, doi: 10.1029/2007GL032884.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, K. C. Hansen, D. L. DeZeeuw, and T. I. Gombosi ( 2002 ), Three‐dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields, J. Geophys. Res., 107 ( A10 ), 1282, doi: 10.1029/2002JA009293.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.en_US
dc.identifier.citedreferenceMa, Y.‐J., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208.en_US
dc.identifier.citedreferenceModolo, R., G. M. Chanteur, E. Dubinin, and A. P. Matthews ( 2006 ), Simulated solar wind plasma interaction with the Martian exosphere: Influence of the solar EUV flux on the bow shock and the magnetic pile‐up boundary, Ann. Geophys., 24, 3403 – 3410.en_US
dc.identifier.citedreferenceNilsson, H., E. Carlsson, D. A. Brain, M. Yamauchi, M. Holmstrom, S. Barabash, R. Lundin, and Y. Futaana ( 2010 ), Ion escape from Mars as a function of solar wind conditions: A statistical study, Icarus, 206 ( 1 ), 40 – 49, doi: 10.1016/j.icarus.2009.03.006.en_US
dc.identifier.citedreferenceOpgenoorth, H. J., D. J. Andrews, M. Fränz, M. Lester, N. J. T. Edberg, D. Morgan, F. Duru, O. Witasse, and A. O. Williams ( 2013 ), Mars ionospheric response to solar wind variability, J. Geophys. Res. Space Physics, 118, 6558 – 6587, doi: 10.1002/jgra.50537.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 2009 ), Ionospheres, 2nd ed., Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceTerada, N., Y. N. Kulikov, H. Lammer, H. I. M. Lichtenegger, T. Tanaka, H. Shinagawa, and T. Zhang ( 2009 ), Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions, Astrobiology, 9 ( 1 ), 55 – 70, doi: 10.1089/ast.2008.0250.en_US
dc.identifier.citedreferenceToth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceVignes, D., et al. ( 2000 ), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor, Geophys. Res. Lett., 27 ( 1 ), 49 – 52, doi: 10.1029/1999GL010703.en_US
dc.identifier.citedreferenceWithers, P., et al. ( 2012 ), A clear view of the multifaceted dayside ionosphere of Mars, Geophys. Res. Lett., 39, L18202, doi: 10.1029/2012GL053193.en_US
dc.identifier.citedreferenceAcuna, M. H., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 279, 1676 – 1680.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 23,197 – 23,208.en_US
dc.identifier.citedreferenceBoesswetter, A., H. Lammer, Y. Kulikov, U. Motschmann, and S. Simon ( 2010 ), Non‐thermal water loss of the early Mars: 3D multi‐ion hybrid simulations, Planet. Space Sci., 58 ( 14‐15 ), 2031.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2012 ), Control of ion loss from Mars during solar minimum, Earth Planets Space, 64, 165 – 178.en_US
dc.identifier.citedreferenceDieval, C., et al. ( 2012 ), A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations, J. Geophys. Res., 117, A06222, doi: 10.1029/2012JA017537.en_US
dc.identifier.citedreferenceDubinin, E., M. Fraenz, J. Woch, F. Duru, D. Gurnett, R. Modolo, S. Barabash, and R. Lundin ( 2009 ), Ionospheric storms on Mars: Impact of the corotating interaction region, Geophys. Res. Lett., 36, L01105, doi: 10.1029/2008GL036559.en_US
dc.identifier.citedreferenceEdberg, N. J. T., H. Nilsson, A. O. Williams, M. Lester, S. E. Milan, S. W. H. Cowley, M. Fränz, S. Barabash, and Y. Futaana ( 2010 ), Pumping out the atmosphere of Mars through solar wind pressure pulses, Geophys. Res. Lett., 37, L03107, doi: 10.1029/2009GL041814.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen ( 2008 ), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi: 10.1029/2007JA012736.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. Luhmann, and Y. Ma ( 2010a ), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130 – 138, doi: 10.1016/j.icarus.2009.01.012.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.