Show simple item record

Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions

dc.contributor.authorMiller, Scot M.en_US
dc.contributor.authorWorthy, Doug E. J.en_US
dc.contributor.authorMichalak, Anna M.en_US
dc.contributor.authorWofsy, Steven C.en_US
dc.contributor.authorKort, Eric A.en_US
dc.contributor.authorHavice, Talya C.en_US
dc.contributor.authorAndrews, Arlyn E.en_US
dc.contributor.authorDlugokencky, Edward J.en_US
dc.contributor.authorKaplan, Jed O.en_US
dc.contributor.authorLevi, Patricia J.en_US
dc.contributor.authorTian, Hanqinen_US
dc.contributor.authorZhang, Bowenen_US
dc.date.accessioned2014-05-21T18:02:44Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-02en_US
dc.identifier.citationMiller, Scot M.; Worthy, Doug E. J.; Michalak, Anna M.; Wofsy, Steven C.; Kort, Eric A.; Havice, Talya C.; Andrews, Arlyn E.; Dlugokencky, Edward J.; Kaplan, Jed O.; Levi, Patricia J.; Tian, Hanqin; Zhang, Bowen (2014). "Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions." Global Biogeochemical Cycles 28(2): 146-160.en_US
dc.identifier.issn0886-6236en_US
dc.identifier.issn1944-9224en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106685
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherIPCC Secretariaten_US
dc.subject.otherBoreal Wetlandsen_US
dc.subject.otherMethane Fluxesen_US
dc.subject.otherGeostatistical Inverse Modelen_US
dc.titleObservational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106685/1/GBC_20128_REVISED_suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106685/2/gbc20128.pdf
dc.identifier.doi10.1002/2013GB004580en_US
dc.identifier.sourceGlobal Biogeochemical Cyclesen_US
dc.identifier.citedreferencePickett‐Heaps, C. A., et al. ( 2011 ), Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmos. Chem. Phys., 11 ( 8 ), 3773 – 3779, doi: 10.5194/acp‐11‐3773‐2011.en_US
dc.identifier.citedreferenceMichalak, A., L. Bruhwiler, and P. Tans ( 2004 ), A geostatistical approach to surface flux estimation of atmospheric trace gases, J. Geophys. Res., 109, D14109, doi: 10.1029/2003JD004422.en_US
dc.identifier.citedreferenceMiller, S. M., et al. ( 2013 ), Anthropogenic emissions of methane in the United States, Proc. Natl. Acad. Sci. U.S.A., 110 ( 50 ), 20,018 – 20,022, doi: 10.1073/pnas.1314392110.en_US
dc.identifier.citedreferenceMiller, S. M., A. M. Michalak, and P. J. Levi ( 2014 ), Atmospheric inverse modeling with known physical bounds: An example from trace gas emissions, Geosci. Model Dev., 7, 303 – 315, doi: 10.5194/gmd‐7‐303‐2014.en_US
dc.identifier.citedreferenceMueller, K. L., S. M. Gourdji, and A. M. Michalak ( 2008 ), Global monthly averaged CO 2 fluxes recovered using a geostatistical inverse modeling approach: 1. Results using atmospheric measurements, J. Geophys. Res., 113, D21114, doi: 10.1029/2007JD009734.en_US
dc.identifier.citedreferenceNehrkorn, T., J. Eluszkiewicz, S. C. Wofsy, J. C. Lin, C. Gerbig, M. Longo, and S. Freitas ( 2010 ), Coupled Weather Research and Forecasting‐Stochastic Time‐Inverted Lagrangian Transport (WRF‐STILT) model, Meteorol. Atmos. Phys., 107 ( 1–2 ), 51 – 64, doi: 10.1007/s00703‐010‐0068‐x.en_US
dc.identifier.citedreferenceO'Connor, F. M., et al. ( 2010 ), Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review, Rev. Geophys., 48, RG4005, doi: 10.1029/2010RG000326.en_US
dc.identifier.citedreferenceOlefeldt, D., M. R. Turetsky, P. M. Crill, and A. D. McGuire ( 2013 ), Environmental and physical controls on northern terrestrial methane emissions across permafrost zones, Global Change Biol., 19 ( 2 ), 589 – 603, doi: 10.1111/gcb.12071.en_US
dc.identifier.citedreferencePapa, F., C. Prigent, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews ( 2010 ), Interannual variability of surface water extent at the global scale, 1993–2004, J. Geophys. Res., 115, D12111, doi: 10.1029/2009JD012674.en_US
dc.identifier.citedreferencePetrescu, A. M. R., L. P. H. van Beek, J. van Huissteden, C. Prigent, T. Sachs, C. A. R. Corradi, F. J. W. Parmentier, and A. J. Dolman ( 2010 ), Modeling regional to global CH 4 emissions of boreal and arctic wetlands, Global Biogeochem. Cycles, 24, GB4009, doi: 10.1029/2009GB003610.en_US
dc.identifier.citedreferencePrigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews ( 2007 ), Global inundation dynamics inferred from multiple satellite observations, 1993–2000, J. Geophys. Res., 112, D12107, doi: 10.1029/2006JD007847.en_US
dc.identifier.citedreferenceRoulet, N. T., R. Ash, and T. R. Moore ( 1992 ), Low boreal wetlands as a source of atmospheric methane, J. Geophys. Res., 97 ( D4 ), 3739 – 3749, doi: 10.1029/91JD03109.en_US
dc.identifier.citedreferenceSchuur, E., et al. ( 2013 ), Expert assessment of vulnerability of permafrost carbon to climate change, Clim. Change, 119 ( 2 ), 359 – 374, doi: 10.1007/s10584‐013‐0730‐7.en_US
dc.identifier.citedreferenceSitch, S., et al. ( 2003 ), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9 ( 2 ), 161 – 185, doi: 10.1046/j.1365‐2486.2003.00569.x.en_US
dc.identifier.citedreferenceSpahni, R., et al. ( 2011 ), Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8 ( 6 ), 1643 – 1665, doi: 10.5194/bg‐8‐1643‐2011.en_US
dc.identifier.citedreferenceTarnocai, C. ( 2009 ), The impact of climate change on Canadian peatlands, Can. Water Resour. J., 34 ( 4 ), 453 – 466, doi: 10.4296/cwrj3404453.en_US
dc.identifier.citedreferenceTarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov ( 2009 ), Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 23, GB2023, doi: 10.1029/2008GB003327.en_US
dc.identifier.citedreferenceTian, H., X. Xu, M. Liu, W. Ren, C. Zhang, G. Chen, and C. Lu ( 2010 ), Spatial and temporal patterns of CH 4 and N 2 O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model, Biogeosciences, 7 ( 9 ), 2673 – 2694, doi: 10.5194/bg‐7‐2673‐2010.en_US
dc.identifier.citedreferenceTian, H., et al. ( 2012 ), Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems, Front. Ecol. Environ., 10 ( 10 ), 528 – 536.en_US
dc.identifier.citedreferencevan Hulzen, J., R. Segers, P. van Bodegom, and P. Leffelaar ( 1999 ), Temperature effects on soil methane production: An explanation for observed variability, Soil Biol. Biochem., 31 ( 14 ), 1919 – 1929, doi: 10.1016/S0038‐0717(99)00109‐1.en_US
dc.identifier.citedreferenceVillani, M. G., P. Bergamaschi, M. Krol, J. F. Meirink, and F. Dentener ( 2010 ), Inverse modeling of European CH 4 emissions: Sensitivity to the observational network, Atmos. Chem. Phys., 10 ( 3 ), 1249 – 1267, doi: 10.5194/acp‐10‐1249‐2010.en_US
dc.identifier.citedreferenceWaddington, J., and N. Roulet ( 1996 ), Atmosphere‐wetland carbon exchanges: Scale dependency of CO 2 and CH 4 exchange on the developmental topography of a peatland, Global Biogeochem. Cycles, 10 ( 2 ), 233 – 245, doi: 10.1029/95GB03871.en_US
dc.identifier.citedreferenceWhalen, S. ( 2005 ), Biogeochemistry of methane exchange between natural wetlands and the atmosphere, Environ. Eng. Sci., 22 ( 1 ), 73 – 94, doi: 10.1089/ees.2005.22.73.en_US
dc.identifier.citedreferenceWorthy, D., I. Levin, F. Hopper, M. Ernst, and N. Trivett ( 2000 ), Evidence for a link between climate and northern wetland methane emissions, J. Geophys. Res., 105, 4031 – 4038.en_US
dc.identifier.citedreferenceZhang, Y., T. Sachs, C. Li, and J. Boike ( 2012 ), Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model, Global Change Biol., 18 ( 4 ), 1428 – 1440, doi: 10.1111/j.1365‐2486.2011.02587.x.en_US
dc.identifier.citedreferenceZhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and M. L. Fischer ( 2009 ), Atmospheric inverse estimates of methane emissions from central California, J. Geophys. Res., 114, D16302, doi: 10.1029/2008JD011671.en_US
dc.identifier.citedreferenceZhu, X., Q. Zhuang, M. Chen, A. Sirin, J. Melillo, D. Kicklighter, A. Sokolov, and L. Song ( 2011 ), Rising methane emissions in response to climate change in Northern Eurasia during the 21st century, Environ. Res. Lett., 6 ( 4 ), 045,211, doi: 10.1088/1748‐9326/6/4/045211.en_US
dc.identifier.citedreferenceZucchini, W. ( 2000 ), An introduction to model selection, J. Math. Psychol., 44 ( 1 ), 41 – 61, doi: 10.1006/jmps.1999.1276.en_US
dc.identifier.citedreferenceAvis, C. A., A. J. Weaver, and K. J. Meissner ( 2011 ), Reduction in areal extent of high‐latitude wetlands in response to permafrost thaw, Nat. Geosci., 4 ( 7 ), 444 – 448, doi: 10.1038/NGEO1160.en_US
dc.identifier.citedreferenceBergamaschi, P., et al. ( 2013 ), Atmospheric CH 4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res. Atmos., 118, 7350 – 7369, doi: 10.1002/jgrd.50480.en_US
dc.identifier.citedreferenceBergamaschi, P., et al. ( 2007 ), Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, doi: 10.1029/2006JD007268.en_US
dc.identifier.citedreferenceBergamaschi, P., et al. ( 2010 ), Inverse modeling of European CH 4 emissions 2001–2006, J. Geophys. Res., 115, D22309, doi: 10.1029/2010JD014180.en_US
dc.identifier.citedreferenceBridgham, S. D., H. Cadillo‐Quiroz, J. K. Keller, and Q. Zhuang ( 2013 ), Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales, Global Change Biol., 19 ( 5 ), 1325 – 1346, doi: 10.1111/gcb.12131.en_US
dc.identifier.citedreferenceBubier, J., A. Costello, T. R. Moore, N. T. Roulet, and K. Savage ( 1993 ), Microtopography and methane flux in boreal peatlands, northern Ontario, Canada, Can. J. Botany, 71 ( 8 ), 1056 – 1063, doi: 10.1139/b93‐122.en_US
dc.identifier.citedreferenceButler, J. ( 2012 ), The NOAA annual greenhouse gas index (AGGI). [Available at http://www.esrl.noaa.gov/gmd/aggi/aggi.html.]en_US
dc.identifier.citedreferenceChen, Y.‐H., and R. G. Prinn ( 2006 ), Estimation of atmospheric methane emissions between 1996 and 2001 using a three‐dimensional global chemical transport model, J. Geophys. Res., 111, D10307, doi: 10.1029/2005JD006058.en_US
dc.identifier.citedreferenceCiais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, and J. Canadell ( 2013 ), Carbon and Other Biogeochemical Cycles—Final Draft Underlying Scientific Technical Assessment, chap. 6, IPCC Secretariat, Geneva.en_US
dc.identifier.citedreferenceComas, X., L. Slater, and A. Reeve ( 2005 ), Geophysical and hydrological evaluation of two bog complexes in a northern peatland: Implications for the distribution of biogenic gases at the basin scale, Global Biogeochem. Cycles, 19, GB4023, doi: 10.1029/2005GB002582.en_US
dc.identifier.citedreferenceDlugokencky, E. J., E. G. Nisbet, R. Fisher, and D. Lowry ( 2011 ), Global atmospheric methane: Budget, changes and dangers, Philos. Trans. R. Soc. London, Ser. A, 369 ( 1943 ), 2058 – 2072, doi: 10.1098/rsta.2010.0341.en_US
dc.identifier.citedreferenceEnvironment Canada ( 2013 ), National inventory report 1990–2011: Greenhouse gas sources and sinks in Canada ‐ executive summary, Tech. Rep. ISSN: 1910‐7064, Environment Canada.en_US
dc.identifier.citedreferenceFraser, A., et al. ( 2013 ), Estimating regional methane surface fluxes: The relative importance of surface and GOSAT mole fraction measurements, Atmos. Chem. Phys., 13 ( 11 ), 5697 – 5713, doi: 10.5194/acp‐13‐5697‐2013.en_US
dc.identifier.citedreferenceGedney, N., P. Cox, and C. Huntingford ( 2004 ), Climate feedback from wetland methane emissions, Geophys. Res. Lett., 31, L20503, doi: 10.1029/2004GL020919.en_US
dc.identifier.citedreferenceGourdji, S. M., et al. ( 2012 ), North American CO 2 exchange: Inter‐comparison of modeled estimates with results from a fine‐scale atmospheric inversion, Biogeosciences, 9 ( 1 ), 457 – 475, doi: 10.5194/bg‐9‐457‐2012.en_US
dc.identifier.citedreferenceGourdji, S. M., K. L. Mueller, K. Schaefer, and A. M. Michalak ( 2008 ), Global monthly averaged CO 2 fluxes recovered using a geostatistical inverse modeling approach: 2. Results including auxiliary environmental data, J. Geophys. Res., 113, D21114, doi: 10.1029/2007JD009733.en_US
dc.identifier.citedreferenceHegarty, J., R. R. Draxler, A. F. Stein, J. Brioude, M. Mountain, J. Eluszkiewicz, T. Nehrkorn, F. Ngan, and A. Andrews ( 2013 ), Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases, J. Appl. Meteorol. Climatol., 52 ( 12 ), 2623 – 2637.en_US
dc.identifier.citedreferenceHendriks, D. M. D., J. van Huissteden, and A. J. Dolman ( 2010 ), Multi‐technique assessment of spatial and temporal variability of methane fluxes in a peat meadow, Agric. For. Meteorol., 150 ( 6 ), 757 – 774, doi: 10.1016/j.agrformet.2009.06.017.en_US
dc.identifier.citedreferenceHugelius, G., C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson ( 2013 ), The Northern Circumpolar Soil Carbon Database: Spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5 ( 1 ), 3 – 13, doi: 10.5194/essd‐5‐3‐2013.en_US
dc.identifier.citedreferenceKaplan, J. ( 2002 ), Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophys. Res. Lett., 29 ( 6 ), 1079, doi: 10.1029/2001GL013366.en_US
dc.identifier.citedreferenceKass, R., and A. Raftery ( 1995 ), Bayes factors, J. Am. Stat. Assoc., 90 ( 430 ), 773 – 795, doi: 10.2307/2291091.en_US
dc.identifier.citedreferenceKhvorostyanov, D. V., P. Ciais, G. Krinner, and S. A. Zimov ( 2008 ), Vulnerability of east Siberia's frozen carbon stores to future warming, Geophys. Res. Lett., 35, L10703, doi: 10.1029/2008GL033639.en_US
dc.identifier.citedreferenceKim, H.‐S., S. Maksyutov, M. V. Glagolev, T. Machida, P. K. Patra, K. Sudo, and G. Inoue ( 2011 ), Evaluation of methane emissions from West Siberian wetlands based on inverse modeling, Environ. Res. Lett., 6 ( 3 ), 035,201, doi: 10.1088/1748‐9326/6/3/035201.en_US
dc.identifier.citedreferenceKirschke, S., et al. ( 2013 ), Three decades of global methane sources and sinks, Nat. Geosci., 6 ( 10 ), 813 – 823.en_US
dc.identifier.citedreferenceKitanidis, P. ( 1995 ), Quasi‐linear geostatistical theory for inversing, Water Resour. Res., 31 ( 10 ), 2411 – 2419, doi: 10.1029/95WR01945.en_US
dc.identifier.citedreferenceKitanidis, P. K., and E. G. Vomvoris ( 1983 ), A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations, Water Resour. Res., 19 ( 3 ), 677 – 690, doi: 10.1029/WR019i003p00677.en_US
dc.identifier.citedreferenceKoven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai ( 2011 ), Permafrost carbon‐climate feedbacks accelerate global warming, Proc. Natl. Acad. Sci. U.S.A., 108 ( 36 ), 14,769 – 14,774, doi: 10.1073/pnas.1103910108.en_US
dc.identifier.citedreferenceLin, J., C. Gerbig, S. Wofsy, A. Andrews, B. Daube, K. Davis, and C. Grainger ( 2003 ), A near‐field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time‐Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108 ( D16 ), 4493, doi: 10.1029/2002JD003161.en_US
dc.identifier.citedreferenceLupascu, M., J. Wadham, E. R. Hornibrook, and R. Pancost ( 2012 ), Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: A comparison with non‐permafrost northern wetlands, Arct. Alp. Res., 44 ( 4 ), 469 – 482.en_US
dc.identifier.citedreferenceMelton, J. R., et al. ( 2013 ), Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter‐comparison project (WETCHIMP), Biogeosciences, 10 ( 2 ), 753 – 788, doi: 10.5194/bg‐10‐753‐2013.en_US
dc.identifier.citedreferenceMesinger, F., et al. ( 2006 ), North American Regional Reanalysis., Bull. Am. Meteorol. Soc., 87, 343 – 360, doi: 10.1175/BAMS‐87‐3‐343.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.