Show simple item record

Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM

dc.contributor.authorPerket, Justinen_US
dc.contributor.authorFlanner, Mark G.en_US
dc.contributor.authorKay, Jennifer E.en_US
dc.date.accessioned2014-05-21T18:02:52Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-02-16en_US
dc.identifier.citationPerket, Justin; Flanner, Mark G.; Kay, Jennifer E. (2014). "Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM." Journal of Geophysical Research: Atmospheres 119(3): 1356-1362.en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106707
dc.description.abstractWe incorporate a new diagnostic called the cryosphere radiative effect (CrRE), the instantaneous influence of surface snow and sea ice on the top‐of‐model solar energy budget, into two released versions of the Community Earth System Model (CESM1 and CCSM4). CrRE offers a more climatically relevant metric of the cryospheric state than snow and sea ice extent and is influenced by factors such as the seasonal cycle of insolation, cloud masking, and vegetation cover. We evaluate CrRE during the late 20th century and over the 21st century, specifically diagnosing the nature of CrRE contributions from terrestrial and marine sources. The radiative influence of ice sheets and glaciers is not considered, but snow on top of them is accounted for. Present‐day global CrRE in both models is −3.8 W m −2 , with a boreal component (−4.2 to −4.6 W m −2 ) that compares well with observationally derived estimates (−3.9 to −4.6 W m −2 ). Similar present‐day CrRE in the two model versions results from compensating differences in cloud masking and sea ice extent. Over the 21st century, radiative forcing in the Representative Concentration Pathway (RCP) 8.5 scenario causes reduced boreal sea ice cover, austral sea ice cover, and boreal snow cover, which all contribute roughly equally to enhancing global absorbed shortwave radiation by 1.4–1.8 Wm −2 . Twenty‐first century RCP8.5 global cryospheric albedo feedback are +0.41 and +0.45 W/m 2 /K, indicating that the two models exhibit similar temperature‐normalized CrRE change. Key Points We implement the first GCM diagnostic calculation of cryosphere radiative effect Global average CrRE from snow and sea ice is −4 W m −2 in present‐day simulations Earth absorbs 1.6 W m −2 more insolation from cryosphere loss by 2099 in RCP8.5en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAlbedo Feedbacken_US
dc.subject.otherCrREen_US
dc.subject.otherSnow Reflectanceen_US
dc.subject.otherSea Ice Lossen_US
dc.subject.otherCryosphere Evolutionen_US
dc.titleDiagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESMen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106707/1/jgrd51156.pdf
dc.identifier.doi10.1002/2013JD021139en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferenceQu, X., and A. Hall ( 2013 ), On the persistent spread in snow‐albedo feedback, Clim. Dyn., 42, 69 – 81, doi: 10.1007/s00382‐013‐1774‐0.en_US
dc.identifier.citedreferenceBony, S., et al. ( 2006 ), How well do we understand and evaluate climate change feedback processes?, J. Clim., 19 ( 15 ), 3445 – 3482, doi: 10.1175/JCLI3819.1.en_US
dc.identifier.citedreferenceBox, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen ( 2012 ), Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers, Cryosphere, 6 ( 4 ), 821 – 839, doi: 10.5194/tc‐6‐821‐2012.en_US
dc.identifier.citedreferenceBriegleb, B., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, NCAR Tech. Note NCAR/TN‐472 + STR, doi: 10.5065/D6B27S71.en_US
dc.identifier.citedreferenceDonohoe, A., and D. S. Battisti ( 2011 ), Atmospheric and surface contributions to planetary albedo, J. Clim., 24 ( 16 ), 4402 – 4418, doi: 10.1175/2011JCLI3946.1.en_US
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.en_US
dc.identifier.citedreferenceFlanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4 ( 3 ), 151 – 155, doi: 10.1038/ngeo1062.en_US
dc.identifier.citedreferenceGent, P. R., et al. ( 2011 ), The Community Climate System Model Version 4, J. Clim., 24 ( 19 ), 4973 – 4991, doi: 10.1175/2011JCLI4083.1.en_US
dc.identifier.citedreferenceHolland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea Ice, J. Clim., 25 ( 5 ), 1413 – 1430, doi: 10.1175/JCLI‐D‐11‐00078.1.en_US
dc.identifier.citedreferenceHurrell, J. W., et al. ( 2013 ), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94 ( 9 ), 1339 – 1360, doi: 10.1175/BAMS‐D‐12‐00121.1.en_US
dc.identifier.citedreferenceKay, J. E., K. Raeder, A. Gettelman, and J. Anderson ( 2011 ), The boundary layer response to recent Arctic sea ice loss and implications for high‐latitude climate feedbacks, J. Clim., 24 ( 2 ), 428 – 447, doi: 10.1175/2010JCLI3651.1.en_US
dc.identifier.citedreferenceKay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard‐Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey ( 2012 ), The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing, J. Clim., 25 ( 16 ), 5433 – 5450, doi: 10.1175/JCLI‐D‐11‐00622.1.en_US
dc.identifier.citedreferenceLawrence, D. M., et al. ( 2011 ), Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3 ( 3 ), 1 – 27, doi: 10.1029/2011MS000045.en_US
dc.identifier.citedreferenceMeehl, G. A., W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, J. E. Kay, A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand ( 2013 ), Climate change projections in CESM1(CAM5) compared to CCSM4, J. Clim., 26 ( 17 ), 6287 – 6308, doi: 10.1175/JCLI‐D‐12‐00572.1.en_US
dc.identifier.citedreferenceMeinshausen, M., et al. ( 2011 ), The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Change, 109 ( 1–2 ), 213 – 241, doi: 10.1007/s10584‐011‐0156‐z.en_US
dc.identifier.citedreferenceRamanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann ( 1989 ), Cloud‐radiative forcing and climate: Results from the Earth radiation budget experiment, Science, 243 ( 4887 ), 57 – 63, doi: 10.1126/science.243.4887.57.en_US
dc.identifier.citedreferenceShell, K. M., J. T. Kiehl, and C. A. Shields ( 2008 ), Using the radiative kernel technique to calculate climate feedbacks in NCAR's Community Atmospheric Model, J. Clim., 21 ( 10 ), 2269 – 2282, doi: 10.1175/2007JCLI2044.1.en_US
dc.identifier.citedreferenceSoden, B. J., and I. M. Held ( 2006 ), An assessment of climate feedbacks in coupled ocean–atmosphere models, J. Clim., 19 ( 14 ), 3354 – 3360, doi: 10.1175/JCLI3799.1.en_US
dc.identifier.citedreferenceSoden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields ( 2008 ), Quantifying climate feedbacks using radiative kernels, J. Clim., 21 ( 14 ), 3504 – 3520, doi: 10.1175/2007JCLI2110.1.en_US
dc.identifier.citedreferenceStephens, G. ( 2005 ), Cloud feedbacks in the climate system: A critical review, J. Clim., 18, 237 – 273.en_US
dc.identifier.citedreferenceWinton, M. ( 2006 ), Amplified Arctic climate change: What does surface albedo feedback have to do with it?, Geophys. Res. Lett., 33, L03701, doi: 10.1029/2005GL025244.en_US
dc.identifier.citedreferenceArking, A. ( 1991 ), The radiative effects of clouds and their impact on climate, Bull. Am. Meteorol. Soc., 71 ( 6 ), 795 – 813.en_US
dc.identifier.citedreferenceBøggild, C. E., R. E. Brandt, K. J. Brown, and S. G. Warren ( 2010 ), The ablation zone in northeast Greenland: Ice types, albedos and impurities, J. Glaciol., 56, 101 – 113, doi: 10.3189/002214310791190776.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.