Show simple item record

Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

dc.contributor.authorXue, Yien_US
dc.contributor.authorSkrynnikov, Nikolai R.en_US
dc.date.accessioned2014-05-21T18:02:58Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-05-21T18:02:58Z
dc.date.issued2014-04en_US
dc.identifier.citationXue, Yi; Skrynnikov, Nikolai R. (2014). "Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics." Protein Science 23(4): 488-507.en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106717
dc.description.abstractCurrently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free‐energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography‐based restraints into the MD protocol. Because these restraints are aimed at the ensemble‐average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native‐like fashion as dictated by the original force field. To validate this approach, we have used the data from solid‐state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well‐established model protein, ubiquitin. The ensemble‐restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid‐state chemical shifts, and backbone order parameters. The predictions for 15 N R 1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high‐resolution crystallographic data can be viewed as protein‐specific empirical corrections to the standard force fields.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherOxford University Pressen_US
dc.subject.otherCrystallographic R Factorsen_US
dc.subject.otherCrystallographic B Factorsen_US
dc.subject.other15 N Relaxationen_US
dc.subject.otherUbiquitinen_US
dc.subject.otherOrder Parametersen_US
dc.subject.otherProtein Structure and Dynamicsen_US
dc.subject.otherMolecular Dynamics Simulationsen_US
dc.subject.otherForce Fieldsen_US
dc.subject.otherSolid‐State NMRen_US
dc.subject.otherProtein Crystallographyen_US
dc.subject.otherChemical Shiftsen_US
dc.titleEnsemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamicsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106717/1/pro2433.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106717/2/pro2433-sup-0001-suppinfo.pdf
dc.identifier.doi10.1002/pro.2433en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceLong D, Bruschweiler R ( 2011 ) In silico elucidation of the recognition dynamics of ubiquitin. PLoS Comput Biol 7: e1002035.en_US
dc.identifier.citedreferenceKim YM, Prestegard JH ( 1990 ) Refinement of the NMR structures for Acyl Carrier Protein with scalar coupling data. Proteins 8: 377 – 385.en_US
dc.identifier.citedreferenceBonvin AMJJ, Boelens R, Kaptein R ( 1994 ) Time and ensemble‐averaged direct NOE restraints. J Biomol NMR 4: 143 – 149.en_US
dc.identifier.citedreferenceClore GM, Schwieters CD ( 2004 ) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross‐validation? J Am Chem Soc 126: 2923 – 2938.en_US
dc.identifier.citedreferenceTang C, Schwieters CD, Clore GM ( 2007 ) Open‐to‐closed transition in apo maltose‐binding protein observed by paramagnetic NMR. Nature 449: 1078 – 1082.en_US
dc.identifier.citedreferenceLindorff‐Larsen K, Best RB, DePristo MA, Dobson CM, Vendruscolo M ( 2005 ) Simultaneous determination of protein structure and dynamics. Nature 433: 128 – 132.en_US
dc.identifier.citedreferenceAllison JR, Varnai P, Dobson CM, Vendruscolo M ( 2009 ) Determination of the free energy landscape of α‐synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131: 18314 – 18326.en_US
dc.identifier.citedreferenceHuang JR, Grzesiek S ( 2010 ) Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea‐denatured ubiquitin. J Am Chem Soc 132: 694 – 705.en_US
dc.identifier.citedreferenceRobustelli P, Kohlhoff K, Cavalli A, Vendruscolo M ( 2010 ) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18: 923 – 933.en_US
dc.identifier.citedreferenceEsteban‐Martin S, Fenwick RB, Salvatella X ( 2010 ) Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132: 4626 – 4632.en_US
dc.identifier.citedreferenceIm W, Jo S, Kim T ( 2012 ) An ensemble dynamics approach to decipher solid‐state NMR observables of membrane proteins. BBA Biomembr 1818: 252 – 262.en_US
dc.identifier.citedreferenceKuriyan J, Osapay K, Burley SK, Brunger AT, Hendrickson WA, Karplus M ( 1991 ) Exploration of disorder in protein structures by X‐ray restrained molecular dynamics. Proteins 10: 340 – 358.en_US
dc.identifier.citedreferenceBurling FT, Brunger AT ( 1994 ) Thermal motion and conformational disorder in protein crystal structures: comparison of multi‐conformer and time‐averaging models. Israel J Chem 34: 165 – 175.en_US
dc.identifier.citedreferenceGros P, Van Gunsteren WF, Hol WGJ ( 1990 ) Inclusion of thermal motion in crystallographic structure by restrained Molecular Dynamics. Science 249: 1149 – 1152.en_US
dc.identifier.citedreferenceClarage JB, Phillips GN ( 1994 ) Cross‐validation tests of time‐averaged molecular dynamics refinements for determination of protein structures by X‐ray crystallography. Acta Crystallogr Sect D: Biol Crystallogr 50: 24 – 36.en_US
dc.identifier.citedreferencePellegrini M, Gronbech‐Jensen N, Kelly JA, Pfluegl GMU, Yeates TO ( 1997 ) Highly constrained multiple‐copy refinement of protein crystal structures. Proteins 29: 426 – 432.en_US
dc.identifier.citedreferenceLevin EJ, Kondrashov DA, Wesenberg GE, Phillips GN ( 2007 ) Ensemble refinement of protein crystal structures: validation and application. Structure 15: 1040 – 1052.en_US
dc.identifier.citedreferenceBurnley BT, Afonine PV, Adams PD, Gros P ( 2012 ) Modelling dynamics in protein crystal structures by ensemble refinement. eLife Sci 1: e00311.en_US
dc.identifier.citedreferenceDoreleijers JF, Rullmann JAC, Kaptein R ( 1998 ) Quality assessment of NMR structures: a statistical survey. J Mol Biol 281: 149 – 164.en_US
dc.identifier.citedreferenceGarbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV ( 2005 ) Comparison of X‐ray and NMR structures: is there a systematic difference in residue contacts between X‐ray and NMR‐resolved protein structures? Proteins 60: 139 – 147.en_US
dc.identifier.citedreferenceAndrec M, Snyder DA, Zhou ZY, Young J, Montellone GT, Levy RM ( 2007 ) A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing. Proteins 69: 449 – 465.en_US
dc.identifier.citedreferenceWilliamson MP, Kikuchi J, Asakura T ( 1995 ) Application of 1 H NMR chemical shifts to measure the quality of protein structures. J Mol Biol 247: 541 – 546.en_US
dc.identifier.citedreferenceNeal S, Nip AM, Zhang HY, Wishart DS ( 2003 ) Rapid and accurate calculation of protein 1 H, 13 C, and 15 N chemical shifts. J Biomol NMR 26: 215 – 240.en_US
dc.identifier.citedreferenceSpronk C, Nabuurs SB, Krieger E, Vriend G, Vuister GW ( 2004 ) Validation of protein structures derived by NMR spectroscopy. Prog NMR Spectrosc 45: 315 – 337.en_US
dc.identifier.citedreferenceBax A ( 2003 ) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12: 1 – 16.en_US
dc.identifier.citedreferenceSimon K, Xu J, Kim C, Skrynnikov NR ( 2005 ) Estimating the accuracy of protein structures using residual dipolar couplings. J Biomol NMR 33: 83 – 93.en_US
dc.identifier.citedreferenceKrieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G ( 2004 ) Making optimal use of empirical energy functions: force‐field parameterization in crystal space. Proteins 57: 678 – 683.en_US
dc.identifier.citedreferenceRaval A, Piana S, Eastwood MP, Dror RO, Shaw DE ( 2012 ) Refinement of protein structure homology models via long, all‐atom molecular dynamics simulations. Proteins 80: 2071 – 2079.en_US
dc.identifier.citedreferenceLee MR, Baker D, Kollman PA ( 2001 ) 2.1 and 1.8 angstrom average C α RMSD structure predictions on two small proteins, HP‐36 and S15. J Am Chem Soc 123: 1040 – 1046.en_US
dc.identifier.citedreferenceFan H, Mark AE ( 2004 ) Refinement of homology‐based protein structures by molecular dynamics simulation techniques. Protein Sci 13: 211 – 220.en_US
dc.identifier.citedreferenceLindorff‐Larsen K, Piana S, Dror RO, Shaw DE ( 2011 ) How fast‐folding proteins fold. Science 334: 517 – 520.en_US
dc.identifier.citedreferenceLee MR, Tsai J, Baker D, Kollman PA ( 2001 ) Molecular dynamics in the endgame of protein structure prediction. J Mol Biol 313: 417 – 430.en_US
dc.identifier.citedreferenceChen JH, Brooks CL ( 2007 ) Can molecular dynamics simulations provide high‐resolution refinement of protein structure? Proteins 67: 922 – 930.en_US
dc.identifier.citedreferenceChopra G, Summa CM, Levitt M ( 2008 ) Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci USA 105: 20239 – 20244.en_US
dc.identifier.citedreferenceMacCallum JL, Hua L, Schnieders MJ, Pande VS, Jacobson MP, Dill KA ( 2009 ) Assessment of the protein‐structure refinement category in CASP8. Proteins 77: 66 – 80.en_US
dc.identifier.citedreferenceMacCallum JL, Perez A, Schnieders MJ, Hua L, Jacobson MP, Dill KA ( 2011 ) Assessment of protein structure refinement in CASP9. Proteins 79: 74 – 90.en_US
dc.identifier.citedreferencePonder JW, Wu CJ, Ren PY, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head‐Gordon M, Clark GNI, Johnson ME, Head‐Gordon T ( 2010 ) Current status of the AMOEBA polarizable force field. J Phys Chem B 114: 2549 – 2564.en_US
dc.identifier.citedreferenceMackerell AD, Feig M, Brooks CL ( 2004 ) Extending the treatment of backbone energetics in protein force fields: limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400 – 1415.en_US
dc.identifier.citedreferenceBest RB & Hummer G ( 2009 ) Optimized molecular dynamics force fields applied to the helix‐coil transition of polypeptides. J Phys Chem B 113: 9004 – 9015.en_US
dc.identifier.citedreferenceLi DW, Brüschweiler R ( 2010 ) NMR‐based protein potentials. Angew Chem Int Ed 49: 6778 – 6780.en_US
dc.identifier.citedreferenceStocker U, Spiegel K, van Gunsteren WF ( 2000 ) On the similarity of properties in solution or in the crystalline state: a molecular dynamics study of hen lysozyme. J Biomol NMR 18: 1 – 12.en_US
dc.identifier.citedreferenceMeinhold L, Smith JC ( 2005 ) Fluctuations and correlations in crystalline protein dynamics: a simulation analysis of Staphylococcal nuclease. Biophys J 88: 2554 – 2563.en_US
dc.identifier.citedreferenceCerutti DS, Freddolino PL, Duke RE, Case DA ( 2010 ) Simulations of a protein crystal with a high resolution X‐ray structure: evaluation of force fields and water models. J Phys Chem B 114: 12811 – 12824.en_US
dc.identifier.citedreferenceChevelkov V, Xue Y, Linser R, Skrynnikov NR, Reif B ( 2010 ) Comparison of solid‐state dipolar couplings and solution relaxation data provides insight into protein backbone dynamics. J Am Chem Soc 132: 5015 – 5017.en_US
dc.identifier.citedreferenceMollica L, Baias M, Lewandowski JR, Wylie BJ, Sperling LJ, Rienstra CM, Emsley JW, Blackledge M ( 2012 ) Atomic‐resolution structural dynamics in crystalline proteins from NMR and Molecular Simulation. J Phys Chem Lett 3: 3657−3662.en_US
dc.identifier.citedreferenceMartin RW, Zilm KW ( 2003 ) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165: 162 – 174.en_US
dc.identifier.citedreferenceIgumenova TI, Wand AJ, McDermott AE ( 2004 ) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126: 5323 – 5331.en_US
dc.identifier.citedreferenceLorieau JL, McDermott AE ( 2006 ) Conformational flexibility of a microcrystalline globular protein: order parameters by solid‐state NMR spectroscopy. J Am Chem Soc 128: 11505 – 11512.en_US
dc.identifier.citedreferenceManolikas T, Herrmann T, Meier BH ( 2008 ) Protein structure determination from 13 C spin‐diffusion solid‐state NMR spectroscopy. J Am Chem Soc 130: 3959 – 3966.en_US
dc.identifier.citedreferenceSchanda P, Meier BH, Ernst M ( 2010 ) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid‐state NMR spectroscopy. J Am Chem Soc 132: 15957 – 15967.en_US
dc.identifier.citedreferenceTollinger M, Sivertsen AC, Meier BH, Ernst M, Schanda P ( 2012 ) Site‐resolved measurement of microsecond‐to‐millisecond conformational exchange processes in proteins by solid‐state NMR spectroscopy. J Am Chem Soc 134: 14800 – 14807.en_US
dc.identifier.citedreferenceHuang KY, Amodeo GA, Tong LA, McDermott A ( 2011 ) The structure of human ubiquitin in 2‐methyl‐2,4‐pentanediol: a new conformational switch. Protein Sci 20: 630 – 639.en_US
dc.identifier.citedreferenceKohn JE, Afonine PV, Ruscio JZ, Adams PD, Head‐Gordon T ( 2010 ) Evidence of functional protein dynamics from X‐ray crystallographic ensembles. PLoS Comput Biol 6: e1000911.en_US
dc.identifier.citedreferenceJuers DH & Matthews BW ( 2001 ) Reversible lattice repacking illustrates the temperature dependence of macromolecular interactions. J Mol Biol 311 ( 4 ): 851 – 862.en_US
dc.identifier.citedreferenceRadaelli PG ( 2011 ). Symmetry in crystallography: understanding the international tables, Oxford: Oxford University Press.en_US
dc.identifier.citedreferencePiana S, Lindorff‐Larsen K, Shaw DE ( 2013 ) Atomic‐level description of ubiquitin folding. Proc Natl Acad Sci USA 110: 5915 – 5920.en_US
dc.identifier.citedreferenceHornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C ( 2006 ) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712 – 725.en_US
dc.identifier.citedreferenceLindorff‐Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE ( 2010 ) Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins 78: 1950 – 1958.en_US
dc.identifier.citedreferenceBas DC, Rogers DM, Jensen JH ( 2008 ) Very fast prediction and rationalization of pKa values for protein‐ligand complexes. Proteins 73: 765 – 783.en_US
dc.identifier.citedreferenceSundd M, Iverson N, Ibarra‐Molero B, Sanchez‐Ruiz JM, Robertson AD ( 2002 ) Electrostatic interactions in ubiquitin: stabilization of carboxylates by lysine amino groups. Biochemistry 41: 7586 – 7596.en_US
dc.identifier.citedreferenceCerutti DS, Le Trong I, Stenkamp RE, Lybrand TP ( 2008 ) Simulations of a protein crystal: explicit treatment of crystallization conditions links theory and experiment in the streptavidin‐biotin complex. Biochemistry 47: 12065 – 12077.en_US
dc.identifier.citedreferenceAdams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse‐Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH ( 2010 ) PHENIX: a comprehensive Python‐based system for macromolecular structure solution. Acta Crystallogr Sect D: Biol Crystallogr 66: 213 – 221.en_US
dc.identifier.citedreferenceFokine A, Urzhumtsev A ( 2002 ) Flat bulk‐solvent model: obtaining optimal parameters. Acta Crystallogr Sect D: Biol Crystallogr 58: 1387 – 1392.en_US
dc.identifier.citedreferenceAfonine PV, Grosse‐Kunstleve RW, Adams PD ( 2005 ) A robust bulk‐solvent correction and anisotropic scaling procedure. Acta Crystallogr Sect D: Biol Crystallogr 61: 850 – 855.en_US
dc.identifier.citedreferenceHan B, Liu YF, Ginzinger SW, Wishart DS ( 2011 ) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50: 43 – 57.en_US
dc.identifier.citedreferenceIgumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ ( 2004 ) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126: 6720 – 6727.en_US
dc.identifier.citedreferenceBrüschweiler R, Wright PE ( 1994 ) NMR order parameters of biomolecules: a new analytical representation and application to the Gaussian Axial Fluctuation model. J Am Chem Soc 116: 8426 – 8427.en_US
dc.identifier.citedreferenceHaller JD, Schanda P ( 2013 ) Amplitudes and time scales of picosecond‐to‐microsecond motion in proteins studied by solid‐state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin. J Biomol NMR 57: 263 – 280.en_US
dc.identifier.citedreferenceVijay‐Kumar S, Bugg CE, Cook WJ ( 1987 ) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194: 531 – 544.en_US
dc.identifier.citedreferenceFenwick RB, Esteban‐Martin S, Richter B, Lee D, Walter KFA, Milovanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X ( 2011 ) Weak long‐range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133: 10336 – 10339.en_US
dc.identifier.citedreferenceVitkup D, Ringe D, Karplus M, Petsko GA ( 2002 ) Why protein R‐factors are so large: a self‐consistent analysis. Proteins 46: 345 – 354.en_US
dc.identifier.citedreferenceDePristo MA, de Bakker PIW, Blundell TL ( 2004 ) Heterogeneity and inaccuracy in protein structures solved by X‐ray crystallography. Structure 12: 831 – 838.en_US
dc.identifier.citedreferenceShirts MR, Pitera JW, Swope WC, Pande VS ( 2003 ) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119: 5740 – 5761.en_US
dc.identifier.citedreferenceSeeliger D, de Groot BL ( 2010 ) Protein thermostability calculations using alchemical free energy simulations. Biophys J 98: 2309 – 2316.en_US
dc.identifier.citedreferenceLinge JP, Williams MA, Spronk CAEM, Bonvin AMJJ, Nilges M ( 2003 ) Refinement of protein structures in explicit solvent. Proteins 50: 496 – 506.en_US
dc.identifier.citedreferenceHalle B ( 2002 ) Flexibility and packing in proteins. Proc Natl Acad Sci USA 99: 1274 – 1279.en_US
dc.identifier.citedreferenceRobustelli P, Stafford KA, Palmer AG ( 2012 ) Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 134: 6365 – 6374.en_US
dc.identifier.citedreferenceLi DW, Brüschweiler R ( 2010 ) Certification of molecular dynamics trajectories with NMR chemical shifts. J Phys Chem Lett 1: 246 – 248.en_US
dc.identifier.citedreferenceLehtivarjo J, Tuppurainen K, Hassinen T, Laatikainen R, Perakyla M ( 2012 ) Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction. J Biomol NMR 52: 257 – 267.en_US
dc.identifier.citedreferenceLi DW, Brüschweiler R ( 2012 ) PPM: a side‐chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. J Biomol NMR 54: 257 – 265.en_US
dc.identifier.citedreferenceLewandowski JR, Sein J, Blackledge M, Emsley L ( 2010 ) Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins. J Am Chem Soc 132: 1246 – 1247.en_US
dc.identifier.citedreferenceBremi T, Brüschweiler R ( 1997 ) Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation. J Am Chem Soc 119: 6672 – 6673.en_US
dc.identifier.citedreferenceLange OF, Lakomek NA, Farès C, Schröder GF, Walter KFA, Becker S, Meiler J, Grubmüller H, Griesinger C, de Groot BL ( 2008 ) Recognition dynamics up to microseconds revealed from an RDC‐derived ubiquitin ensemble in solution. Science 320: 1471 – 1475.en_US
dc.identifier.citedreferenceXue Y, Ward JM, Yuwen TR, Podkorytov IS, Skrynnikov NR ( 2012 ) Microsecond time‐scale conformational exchange in proteins: using long Molecular Dynamics trajectory to simulate NMR relaxation dispersion data. J Am Chem Soc 134: 2555 – 2562.en_US
dc.identifier.citedreferenceMassi F, Grey MJ, Palmer AG ( 2005 ) Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R 1ρ relaxation experiments. Protein Sci 14: 735 – 742.en_US
dc.identifier.citedreferenceSidhu A, Surolia A, Robertson AD, Sundd M ( 2011 ) A hydrogen bond regulates slow motions in ubiquitin by modulating a β‐turn flip. J Mol Biol 411: 1037 – 1048.en_US
dc.identifier.citedreferenceGarcia AE, Krumhansl JA, Frauenfelder H ( 1997 ) Variations on a theme by Debye and Waller: from simple crystals to proteins. Proteins 29: 153 – 160.en_US
dc.identifier.citedreferenceKundu S, Melton JS, Sorensen DC, Phillips GN ( 2002 ) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83: 723 – 732.en_US
dc.identifier.citedreferencePoon BK, Chen XR, Lu MY, Vyas NK, Quiocho FA, Wang QH, Ma JP ( 2007 ) Normal mode refinement of anisotropic thermal parameters for a supramolecular complex at 3.42‐A crystallographic resolution. Proc Natl Acad Sci USA 104: 7869 – 7874.en_US
dc.identifier.citedreferenceAfonine PV, Urzhumtsev A, Grosse‐Kunstleve RW, Adams PD ( 2010 ) atomic displacement parameters (ADPs), their parameterization and refinement in PHENIX. Comput Crystallogr Newsletter 1: 24 – 31.en_US
dc.identifier.citedreferenceMerritt EA ( 2012 ) To B or not to B: a question of resolution? Acta Crystallogr Sect D: Biol Crystallogr 68: 468 – 477.en_US
dc.identifier.citedreferenceChong SH, Joti Y, Kidera A, Go N, Ostermann A, Gassmann A, Parak F ( 2001 ) Dynamical transition of myoglobin in a crystal: comparative studies of X‐ray crystallography and Mossbauer spectroscopy. Eur Biophys J 30: 319 – 329.en_US
dc.identifier.citedreferenceSchmidt M, Achterhold K, Prusakov V, Parak FG ( 2009 ) Protein dynamics of a β‐sheet protein. Eur Biophys J 38: 687 – 700.en_US
dc.identifier.citedreferenceTilton RF, Dewan JC, Petsko GA ( 1992 ) Effects of temperature on protein structure and dynamics: X‐ray crystallographic studies of the protein ribonuclease‐A at 9 different temperatures from 98 K to 320 K. Biochemistry 31: 2469 – 2481.en_US
dc.identifier.citedreferenceTeeter MM, Yamano A, Stec B, Mohanty U ( 2001 ) On the nature of a glassy state of matter in a hydrated protein: relation to protein function. Proc Natl Acad Sci USA 98: 11242 – 11247.en_US
dc.identifier.citedreferenceJoti Y, Nakasako M, Kidera A, Go N ( 2002 ) Nonlinear temperature dependence of the crystal structure of lysozyme: correlation between coordinate shifts and thermal factors. Acta Crystallogr Sect D: Biol Crystallogr 58: 1421 – 1432.en_US
dc.identifier.citedreferenceChevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B ( 2005 ) Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of α‐spectrin by MAS solid‐state NMR. J Biomol NMR 31: 295 – 310.en_US
dc.identifier.citedreferenceBrzozowski AM, Dodson EJ, Dodson GG, Murshudov GN, Verma C, Turkenburg JP, de Bree FM, Dauter Z ( 2002 ) Structural origins of the functional divergence of human insulin‐like growth factor‐I and insulin. Biochemistry 41: 9389 – 9397.en_US
dc.identifier.citedreferenceChevelkov V, Zhuravleva AV, Xue Y, Reif B, Skrynnikov NR ( 2007 ) Combined analysis of 15 N relaxation data from solid‐ and solution‐state NMR spectroscopy. J Am Chem Soc 129: 12594 – 12595.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.