Show simple item record

On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield

dc.contributor.authorKim, Jonghoen_US
dc.contributor.authorIvanov, Valeriy Y.en_US
dc.date.accessioned2014-05-21T18:03:14Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-02en_US
dc.identifier.citationKim, Jongho; Ivanov, Valeriy Y. (2014). "On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield." Water Resources Research 50(2): 1025-1045.en_US
dc.identifier.issn0043-1397en_US
dc.identifier.issn1944-7973en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106740
dc.description.abstractThe understanding of reasons leading to nonuniqueness of soil erosion susceptibility is still inadequate, yet indispensable for establishing general relations between runoff volume and sediment yield. To obtain relevant insights, we performed a series of numerical simulations with a detailed hydrodynamic model using synthetic storms of varying intensity, duration, and lag time between events as representations of different hydrologic response conditions in a zero‐order catchment. The design targeted to generate surface flow and “perturb” soil substrate by a first rainfall event, creating a set of initial conditions in terms of flow and deposited sediment prior to the onset of a subsequent rainfall event. Due to the differential effect of (re)detachment and (re)entrainment processes on soil particles of varying sizes, the deposited sediment mass formed shielding layer. One of the essential results is that unless the initial condition of flow and sediment is identical, the same volume of runoff can generate different total sediment yields and their variation can reach up to ∼200%. The effect is attributed to two major conflicting effects exerted by the deposited “initialization” (soil antecedent condition) sediment mass: erosion enhancement, because of supply of highly erodible sediment, and erosion impediment, because of constrain on the availability of lighter particles by heavier sediment. Consistently with this inference, long‐term simulations with continuous rainfall show that a peculiar feature of sediment yield series is the existence of maximum before the steady state is reached. The two characteristic time scales, the time to peak and the time to steady state, separate three characteristic periods that correspond to flow‐limited, source‐limited, and steady‐state regimes. These time scales are log linearly and negatively related to the spatially averaged Shields parameter: the smaller the rainfall input and the heavier a given particle is, the larger the two scales are. The results provide insights on how the existence of shield operates on erosion processes, possibly implying that accurate short‐term predictions of geomorphic events from headwater areas may never become a tractable problem: the latter would require a detailed spatial characterization of particle size distribution prior to precipitation events. Key Points The same volume of runoff can generate different total sediment yields (∼200%) Erosion enhancement or impediment effects exerted by the shielding layer Two time scales and three characteristic regimesen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNon‐Uniquenessen_US
dc.subject.otherShielding Layeren_US
dc.subject.otherInitializationsen_US
dc.subject.otherRainfall Patternsen_US
dc.subject.otherHairsine‐Rose Modelen_US
dc.subject.otherSediment Yielden_US
dc.subject.otherSoil Erosionen_US
dc.titleOn the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shielden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106740/1/wrcr20739-sup-0002-suppinfo2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106740/2/wrcr20739.pdf
dc.identifier.doi10.1002/2013WR014580en_US
dc.identifier.sourceWater Resources Researchen_US
dc.identifier.citedreferencePolyakov, V. O., and M. A. Nearing ( 2003 ), Sediment transport in rill flow under deposition and detachment conditions, Catena, 51, 33 – 43.en_US
dc.identifier.citedreferencePierson, F. B., C. W. Slaughter, and Z. K. Cram ( 2001 ), Long‐term stream discharge and suspended‐sediment database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2857 – 2861.en_US
dc.identifier.citedreferenceProffitt, A. P. B., C. W. Rose, and P. B. Hairsine ( 1991 ), Rainfall detachment and deposition: Experiments with low slopes and significant water depths, Soil Sci. Soc. Am. J., 55 ( 2 ), 325 – 332.en_US
dc.identifier.citedreferenceProffitt, A. P. B., P. B. Hairsine, and C. W. Rose ( 1993 ), Modeling soil erosion by overland flow: Application over a range of hydraulic conditions, Trans. ASAE, 36 ( 6 ), 1743 – 1753.en_US
dc.identifier.citedreferenceRomkens, M. J. M., K. Helming, and S. N. Prasad ( 2001 ), Soil erosion under different rainfall intensities, surface roughness, and soil water regimes, Catena, 46 ( 2–3 ), 103 – 123.en_US
dc.identifier.citedreferenceRose, C. W., J. R. Williams, G. C. Sander, and D. A. Barry ( 1983a ), A mathematical model of soil erosion and deposition processes: II. Application to data from an arid‐zone catchment, Soil Sci. Soc. Am. J., 47 ( 5 ), 996 – 1000.en_US
dc.identifier.citedreferenceRose, C. W., J. R. Williams, G. C. Sander, and D. A. Barry ( 1983b ), A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element, Soil Sci. Soc. Am. J., 47 ( 5 ), 991 – 995.en_US
dc.identifier.citedreferenceRose, C. W., B. Yu, H. Ghadiri, H. Asadi, J. Y. Parlange, W. L. Hogarth, and J. Hussein ( 2007 ), Dynamic erosion of soil in steady sheet flow, J. Hydrol., 333 ( 2–4 ), 449 – 458.en_US
dc.identifier.citedreferenceRudolph, A., K. Helming, and H. Diestel ( 1997 ), Effect of antecedent water content and rainfall regime on microrelief changes, Soil Technol., 10, 69 – 81.en_US
dc.identifier.citedreferenceSander, G. C., P. B. Hairsine, C. W. Rose, D. Cassidy, J. Y. Parlange, W. L. Hogarth, and I. G. Lisle ( 1996 ), Unsteady soil erosion model, analytical solutions and comparison with experimental results, J. Hydrol., 178 ( 1–4 ), 351 – 367.en_US
dc.identifier.citedreferenceSander, G. C., P. B. Hairsine, L. Beuselinck, and G. Govers ( 2002 ), Steady state sediment transport through an area of net deposition: Multisize class solutions, Water Resour. Res., 38 ( 6 ), 1087, doi: 10.1029/2001WR000323.en_US
dc.identifier.citedreferenceSander, G. C., T. Zheng, and C. W. Rose ( 2007a ), Update to “Modeling water erosion due to overland flow using physical principles: 1. Sheet flow,” Water Resour. Res., 43, W04408, doi: 10.1029/2006WR005601.en_US
dc.identifier.citedreferenceSander, G. C., J. Y. Parlange, D. A. Barry, M. B. Parlange, and W. L. Hogarth ( 2007b ), Limitation of the transport capacity approach in sediment transport modeling, Water Resour. Res., 43, W02403, doi: 10.1029/2006WR005177.en_US
dc.identifier.citedreferenceSharmeen, S., and G. R. Willgoose ( 2006 ), The interaction between armouring and particle weathering for eroding landscapes, Earth Surf. Processes Landforms, 31 ( 10 ), 1195 – 1210.en_US
dc.identifier.citedreferenceSharmeen, S., and G. R. Willgoose ( 2007 ), A one‐dimensional model for simulating armouring and erosion on hillslopes: 2. Long term erosion and armouring predictions for two contrasting mine spoils, Earth Surf. Processes Landforms, 32 ( 10 ), 1437 – 1453.en_US
dc.identifier.citedreferenceSimon, A., and J. C. Collison ( 2001 ), Pore‐water pressure effects on the detachment of cohesive streambeds: Seepage forces and matric suction, Earth Surf. Processes Landforms, 26, 1421 – 1442.en_US
dc.identifier.citedreferenceSvoray, T., and S. Ben‐Said ( 2010 ), Soil loss, water ponding and sediment deposition variations as a consequence of rainfall intensity and land use: A multi‐criteria analysis, Earth Surf. Processes Landforms, 35 ( 2 ), 202 – 216.en_US
dc.identifier.citedreferenceWalker, J. D., M. T. Walter, J. Y. Parlange, C. W. Rose, H. Meerveld, B. Gao, and A. M. Cohen ( 2007 ), Reduced raindrop‐impact driven soil erosion by infiltration, J. Hydrol., 342 ( 3–4 ), 331 – 335.en_US
dc.identifier.citedreferenceWard, P. J., R. T. v. Balen, G. Verstraeten, H. Renssen, and J. Vandenberghe ( 2009 ), The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment, Geomorphology, 103 ( 3 ), 389 – 400.en_US
dc.identifier.citedreferenceWillgoose, G. R., and S. Sharmeen ( 2006 ), A one‐dimensional model for simulating armouring and erosion on hillslopes: 1. Model development and event‐scale dynamics, Earth Surf. Processes Landforms, 31 ( 8 ), 970 – 991.en_US
dc.identifier.citedreferenceWoolhiser, D. A., R. E. Smith, and D. C. Goodrich ( 1990 ), KINEROS, A kinematic runoff and erosion model: Documentation and user manual, Rep. ARS‐77, p. 130, Agric. Res. Serv., U.S. Dep. of Agric., Washington, D. C.en_US
dc.identifier.citedreferenceWuddivira, M. N., R. J. Stone, and E. I. Ekwue ( 2009 ), Clay, organic matter, and wetting effects on splash detachment and aggregate breakdown under intense rainfall, Soil Sci. Soc. Am. J., 73, 226 – 232.en_US
dc.identifier.citedreferenceAbbott, M. B. ( 1974 ), Continuous flows, discontinuous flows and numerical analysis, J. Hydraul. Res., 12 ( 4 ), 417 – 467.en_US
dc.identifier.citedreferenceAbu Hammad, A. H., T. Børresen, and L. E. Haugen ( 2006 ), Effects of rain characteristics and terracing on runoff and erosion under the Mediterranean, Soil Tillage Res., 87 ( 1 ), 39 – 47.en_US
dc.identifier.citedreferenceAhmadi, A., M. R. Neyshabouri, H. Rouhipour, H. Asadi, and M. Irannajad ( 2010 ), Factors and mechanisms influencing interrill erodibility at different rainfall intensities, J. Food Agric. Environ., 8 ( 2 ), 996 – 999.en_US
dc.identifier.citedreferenceArmstrong, A., J. N. Quinton, B. C. P. Heng, and J. H. Chandler ( 2011 ), Variability of interrill erosion at low slopes, Earth Surf. Processes Landforms, 36 ( 1 ), 97 – 106.en_US
dc.identifier.citedreferenceArmstrong, A., J. N. Quinton, B. C. P. Heng, and G. C. Sander ( 2012 ), Processes controlling the development of a shielding layer on natural soil, Eur. J. Soil Sci., 63 ( 1 ), 54 – 64.en_US
dc.identifier.citedreferenceCheng, N. ( 1997 ), Simplified settling velocity formula for sediment particle, J. Hydraul. Eng., 123 ( 2 ), 149 – 152.en_US
dc.identifier.citedreferenceCohen, S., G. Willgoose, and G. Hancock ( 2009 ), The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization, J. Geophys. Res., 114, F03001, doi: 10.1029/2008JF001214.en_US
dc.identifier.citedreferenceCohen, S., G. Willgoose, and G. Hancock ( 2010 ), The mARM3D spatially distributed soil evolution model: Three‐dimensional model framework and analysis of hillslope and landform responses, J. Geophys. Res., 115, F04013, doi: 10.1029/2009JF001536.en_US
dc.identifier.citedreferenceCohen, S., G. Willgoose, and G. Hancock ( 2013 ), Soil‐landscape response to mid and late Quaternary climate fluctuations based on numerical simulations, Quat. Res., 79 ( 3 ), 452 – 457.en_US
dc.identifier.citedreferenceDefersha, M. B., and A. M. Melesse ( 2012 ), Field‐scale investigation of the effect of land use on sediment yield and runoff using runoff plot data and models in the Mara River basin, Kenya, Catena, 89, 54 – 64.en_US
dc.identifier.citedreferenceDefersha, M. B., S. Quraishi, and A. Melesse ( 2011 ), The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia, Hydrol. Earth Syst. Sci., 15, 2367 – 2375.en_US
dc.identifier.citedreferenceEdwards, W. M., and L. B. Owens ( 1991 ), Large storm effects on total soil erosion, J. Soil Water Conserv., 46 ( 1 ), 75 – 78.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2012 ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysis, J. Adv. Model. Earth Syst., 4, M05002, doi: 10.1029/02011MS000086.en_US
dc.identifier.citedreferenceFrancipane, A., V. Y. Ivanov, L. V. Noto, E. Istanbulluoglu, E. Arnone, and R. L. Bras ( 2012 ), tRIBS‐Erosion: A parsimonious physically‐based model for studying catchment hydro‐geomorphic response, Catena, 92, 216 – 231.en_US
dc.identifier.citedreferenceGabet, E. J., and T. Dunne ( 2003 ), Sediment detachment by rain power, Water Resour. Res., 39 ( 1 ), 1002, doi: 10.1029/2001WR000656.en_US
dc.identifier.citedreferenceGao, B., M. T. Walter, T. S. Steenhuis, J. Y. Parlange, K. Nakano, C. W. Rose, and W. L. Hogarth ( 2003 ), Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple, J. Hydrol., 277 ( 1–2 ), 116 – 124.en_US
dc.identifier.citedreferenceHairsine, P. B., and C. W. Rose ( 1991 ), Rainfall detachment and deposition: Sediment transport in the absence of flow‐driven processes, Soil Sci. Soc. Am. J., 55 ( 2 ), 320 – 324.en_US
dc.identifier.citedreferenceHairsine, P. B., and C. W. Rose ( 1992 ), Modeling water erosion due to overland flow using physical principles: 1. Sheet flow, Water Resour. Res., 28 ( 1 ), 237 – 243.en_US
dc.identifier.citedreferenceHairsine, P. B., G. C. Sander, C. W. Rose, J. Y. Parlange, W. L. Hogarth, I. Lisle, and H. Rouhipour ( 1999 ), Unsteady soil erosion due to rainfall impact: A model of sediment sorting on the hillslope, J. Hydrol., 220 ( 3–4 ), 115 – 128.en_US
dc.identifier.citedreferenceHairsine, P. B., L. Beuselinck, and G. C. Sander ( 2002 ), Sediment transport through an area of net deposition, Water Resour. Res., 38 ( 6 ), 22‐1 – 22‐7, doi: 10.1029/2001WR000265.en_US
dc.identifier.citedreferenceHarmel, R. D., C. W. Richardson, K. W. King, and P. M. Allen ( 2006 ), Runoff and soil loss relationships for the Texas Blackland Prairies ecoregion, J. Hydrol., 331, 471 – 483.en_US
dc.identifier.citedreferenceHarmel, R. D., J. V. Bonta, and C. W. Richardson ( 2007 ), The original USDA‐ARS experimental watersheds in Texas and Ohio: Contributions from the past and visions for the future, Trans. ASABE, 50 ( 5 ), 1669 – 1675.en_US
dc.identifier.citedreferenceHayhoe, K., J. VanDorn, T. Croley Ii, N. Schlegal, and D. Wuebbles ( 2010 ), Regional climate change projections for Chicago and the US Great Lakes, J. Great Lakes Res., 36, 7 – 21.en_US
dc.identifier.citedreferenceHeilig, A., et al. ( 2001 ), Testing a mechanistic soil erosion model with a simple experiment, J. Hydrol., 244 ( 1–2 ), 9 – 16.en_US
dc.identifier.citedreferenceHeng, B. C. P., G. C. Sander, and C. F. Scott ( 2009 ), Modeling overland flow and soil erosion on nonuniform hillslopes: A finite volume scheme, Water Resour. Res., 45, W05423, doi: 10.1029/2008WR007502.en_US
dc.identifier.citedreferenceHeng, B. C. P., G. C. Sander, A. Armstrong, J. N. Quinton, J. H. Chandler, and C. F. Scott ( 2011 ), Modeling the dynamics of soil erosion and size‐selective sediment transport over nonuniform topography in flume‐scale experiments, Water Resour. Res., 47, W02513, doi: 10.1029/2010WR009375.en_US
dc.identifier.citedreferenceHogarth, W. L., C. W. Rose, J. Y. Parlange, G. C. Sander, and G. Carey ( 2004a ), Soil erosion due to rainfall impact with no inflow: A numerical solution with spatial and temporal effects of sediment settling velocity characteristics, J. Hydrol., 294 ( 4 ), 229 – 240.en_US
dc.identifier.citedreferenceHogarth, W. L., J. Y. Parlange, C. W. Rose, G. C. Sander, T. S. Steenhuis, and A. Barry ( 2004b ), Soil erosion due to rainfall impact with inflow: An analytical solution with spatial and temporal effects, J. Hydrol., 295 ( 1–4 ), 140 – 148.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004 ), Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resour. Res., 40, W11102, doi: 10.1029/2004WR003218.en_US
dc.identifier.citedreferenceIvanov, V. Y., S. Fatichi, G. D. Jenerette, J. F. Espeleta, P. A. Troch, and T. E. Huxman ( 2010 ), Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation, Water Resour. Res., 46, W09521, doi: 10.1029/02009WR008611.en_US
dc.identifier.citedreferenceJomaa, S., D. A. Barry, A. Brovelli, G. C. Sander, J. Y. Parlange, B. C. P. Heng, and H. J. Tromp‐van Meerveld ( 2010 ), Effect of raindrop splash and transversal width on soil erosion: Laboratory flume experiments and analysis with the Hairsine‐Rose model, J. Hydrol., 395 ( 1–2 ), 117 – 132.en_US
dc.identifier.citedreferenceJomaa, S., D. A. Barry, B. C. P. Heng, A. Brovelli, G. C. Sander, and J. Y. Parlange ( 2012 ), Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling, Water Resour. Res., 48, W05535, doi: 10.1029/2011WR011255.en_US
dc.identifier.citedreferenceJomaa, S., D. A. Barry, B. C. P. Heng, A. Brovelli, G. C. Sander, and J. Y. Parlange ( 2013 ), Effect of antecedent conditions and fixed rock fragment coverage on soil erosion dynamics through multiple rainfall events, J. Hydrol., 484, 115 – 127.en_US
dc.identifier.citedreferenceKim, J., V. Y. Ivanov, and N. D. Katopodes ( 2012a ), Hydraulic resistance to overland flow on surfaces with partially submerged vegetation, Water Resour. Res., 48, W10540, doi: 10.1029/12012WR012047.en_US
dc.identifier.citedreferenceKim, J., A. Warnock, V. Y. Ivanov, and N. D. Katopodes ( 2012b ), Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow, Adv. Water Resour., 37, 104 – 126.en_US
dc.identifier.citedreferenceKim, J., V. Y. Ivanov, and N. D. Katopodes ( 2013 ), Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale, Water Resour. Res., 49, 5134 – 5154, doi: 10.1002/wrcr.20373.en_US
dc.identifier.citedreferenceKinnell, P. I. A. ( 1993 ), Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor, Aust. J. Soil Res., 31 ( 3 ), 319 – 332.en_US
dc.identifier.citedreferenceKinnell, P. I. A. ( 2005 ), Raindrop‐impact‐induced erosion processes and prediction: A review, Hydrol. Processes, 19 ( 14 ), 2815 – 2844.en_US
dc.identifier.citedreferenceKinnell, P. I. A. ( 2006 ), Simulations demonstrating interaction between coarse and fine sediment loads in rain‐impacted flow, Earth Surf. Processes Landforms, 31, 355 – 367.en_US
dc.identifier.citedreferenceKinnell, P. I. A. ( 2009 ), The influence of raindrop induced saltation on particle size distributions in sediment discharged by rain‐impacted flow on planar surfaces, Catena, 78 ( 1 ), 2 – 11.en_US
dc.identifier.citedreferenceKinnell, P. I. A. ( 2012 ), Raindrop‐induced saltation and the enrichment of sediment discharged from sheet and interrill erosion areas, Hydrol. Processes, 26 ( 10 ), 1449 – 1456.en_US
dc.identifier.citedreferenceLane, L. J., M. Hernandez, and M. Nichols ( 1997 ), Processes controlling sediment yield from watersheds as functions of spatial scale, Environ. Modell. Software, 12 ( 4 ), 355 – 369.en_US
dc.identifier.citedreferenceLaws, J. O., and D. A. Parsons ( 1943 ), The relation of raindrop size to intensity, Eos Trans. AGU, 24, 452 – 460.en_US
dc.identifier.citedreferenceLe Bissonnais, Y., A. Bruand, and M. Jamagne ( 1989 ), Laboratory experimental study of soil crusting: Relation between aggregate breakdown mechanisms and crust stucture, Catena, 16 ( 4–5 ), 377 – 392.en_US
dc.identifier.citedreferenceLe Bissonnais, Y., B. Renaux, and H. Delouche ( 1995 ), Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils, Catena, 25 ( 1–4 ), 33 – 46.en_US
dc.identifier.citedreferenceLeendertse, J. J. ( 1967 ), Aspects of a computational model for long‐period water wave propagation, Memo. RM‐5294‐PR, Rand Corp., Santa Monica, Calif.en_US
dc.identifier.citedreferenceLiggett, J. A. ( 1968 ), Mathematical flow determination in open channels, J. Eng. Mech. Div. Am. Soc. Civ. Eng., 94 ( EM4 ), 947 – 963.en_US
dc.identifier.citedreferenceMamedov, A. I., C. Huangb, and G. J. Levy ( 2006 ), Antecedent moisture content and aging duration effects on seal formation and erosion in smectitic soils, Soil Sci. Soc. Am. J., 70, 832 – 843.en_US
dc.identifier.citedreferenceMisra, R. K., and C. W. Rose ( 1995 ), An examination of the relationship between erodibility parameters and soil strength, Aust. J. Soil Res., 33 ( 4 ), 715 – 732.en_US
dc.identifier.citedreferenceMutchler, C. K., and K. C. McGregor ( 1983 ), Erosion from low slopes, Water Resour. Res., 19 ( 5 ), 1323 – 1326.en_US
dc.identifier.citedreferenceNearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner ( 1989 ), A process‐based soil erosion model for USDA‐water erosion prediction project technology, Trans. ASAE, 32 ( 5 ), 1587 – 1593.en_US
dc.identifier.citedreferenceNearing, M. A., A. Kimoto, M. H. Nichols, and J. C. Ritchie ( 2005 ), Spatial patterns of soil erosion and deposition in two small, semiarid watersheds, J. Geophys. Res., 110, F04020, doi: 10.1029/2005JF000290.en_US
dc.identifier.citedreferenceNearing, M. A., M. H. Nichols, J. J. Stone, K. G. Renard, and J. R. Simanton ( 2007 ), Sediment yields from unit‐source semiarid watersheds at Walnut Gulch, Water Resour. Res., 43, W06426, doi: 10.1029/2006WR005692.en_US
dc.identifier.citedreferenceNotebaerta, B., G. Verstraetena, P. Wardb, H. Renssenb, and A. V. Rompaey ( 2011 ), Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale, Geomorphology, 126 ( 1–2 ), 18 – 31.en_US
dc.identifier.citedreferencePapanicolaou, A. N., J. T. Sanford, D. C. Dermisis, and G. A. Mancilla ( 2010 ), A 1‐D morphodynamic model for rill erosion, Water Resour. Res., 46, W09541, doi: 10.1029/2009WR008486.en_US
dc.identifier.citedreferencePhillips, J. ( 2003 ), Alluvial storage and the long‐term stability of sediment yields, Basin Res., 15, 153 – 163.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.