On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield
dc.contributor.author | Kim, Jongho | en_US |
dc.contributor.author | Ivanov, Valeriy Y. | en_US |
dc.date.accessioned | 2014-05-21T18:03:14Z | |
dc.date.available | 2015-05-04T14:37:25Z | en_US |
dc.date.issued | 2014-02 | en_US |
dc.identifier.citation | Kim, Jongho; Ivanov, Valeriy Y. (2014). "On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield." Water Resources Research 50(2): 1025-1045. | en_US |
dc.identifier.issn | 0043-1397 | en_US |
dc.identifier.issn | 1944-7973 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/106740 | |
dc.description.abstract | The understanding of reasons leading to nonuniqueness of soil erosion susceptibility is still inadequate, yet indispensable for establishing general relations between runoff volume and sediment yield. To obtain relevant insights, we performed a series of numerical simulations with a detailed hydrodynamic model using synthetic storms of varying intensity, duration, and lag time between events as representations of different hydrologic response conditions in a zero‐order catchment. The design targeted to generate surface flow and “perturb” soil substrate by a first rainfall event, creating a set of initial conditions in terms of flow and deposited sediment prior to the onset of a subsequent rainfall event. Due to the differential effect of (re)detachment and (re)entrainment processes on soil particles of varying sizes, the deposited sediment mass formed shielding layer. One of the essential results is that unless the initial condition of flow and sediment is identical, the same volume of runoff can generate different total sediment yields and their variation can reach up to ∼200%. The effect is attributed to two major conflicting effects exerted by the deposited “initialization” (soil antecedent condition) sediment mass: erosion enhancement, because of supply of highly erodible sediment, and erosion impediment, because of constrain on the availability of lighter particles by heavier sediment. Consistently with this inference, long‐term simulations with continuous rainfall show that a peculiar feature of sediment yield series is the existence of maximum before the steady state is reached. The two characteristic time scales, the time to peak and the time to steady state, separate three characteristic periods that correspond to flow‐limited, source‐limited, and steady‐state regimes. These time scales are log linearly and negatively related to the spatially averaged Shields parameter: the smaller the rainfall input and the heavier a given particle is, the larger the two scales are. The results provide insights on how the existence of shield operates on erosion processes, possibly implying that accurate short‐term predictions of geomorphic events from headwater areas may never become a tractable problem: the latter would require a detailed spatial characterization of particle size distribution prior to precipitation events. Key Points The same volume of runoff can generate different total sediment yields (∼200%) Erosion enhancement or impediment effects exerted by the shielding layer Two time scales and three characteristic regimes | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Non‐Uniqueness | en_US |
dc.subject.other | Shielding Layer | en_US |
dc.subject.other | Initializations | en_US |
dc.subject.other | Rainfall Patterns | en_US |
dc.subject.other | Hairsine‐Rose Model | en_US |
dc.subject.other | Sediment Yield | en_US |
dc.subject.other | Soil Erosion | en_US |
dc.title | On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/106740/1/wrcr20739-sup-0002-suppinfo2.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/106740/2/wrcr20739.pdf | |
dc.identifier.doi | 10.1002/2013WR014580 | en_US |
dc.identifier.source | Water Resources Research | en_US |
dc.identifier.citedreference | Polyakov, V. O., and M. A. Nearing ( 2003 ), Sediment transport in rill flow under deposition and detachment conditions, Catena, 51, 33 – 43. | en_US |
dc.identifier.citedreference | Pierson, F. B., C. W. Slaughter, and Z. K. Cram ( 2001 ), Long‐term stream discharge and suspended‐sediment database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2857 – 2861. | en_US |
dc.identifier.citedreference | Proffitt, A. P. B., C. W. Rose, and P. B. Hairsine ( 1991 ), Rainfall detachment and deposition: Experiments with low slopes and significant water depths, Soil Sci. Soc. Am. J., 55 ( 2 ), 325 – 332. | en_US |
dc.identifier.citedreference | Proffitt, A. P. B., P. B. Hairsine, and C. W. Rose ( 1993 ), Modeling soil erosion by overland flow: Application over a range of hydraulic conditions, Trans. ASAE, 36 ( 6 ), 1743 – 1753. | en_US |
dc.identifier.citedreference | Romkens, M. J. M., K. Helming, and S. N. Prasad ( 2001 ), Soil erosion under different rainfall intensities, surface roughness, and soil water regimes, Catena, 46 ( 2–3 ), 103 – 123. | en_US |
dc.identifier.citedreference | Rose, C. W., J. R. Williams, G. C. Sander, and D. A. Barry ( 1983a ), A mathematical model of soil erosion and deposition processes: II. Application to data from an arid‐zone catchment, Soil Sci. Soc. Am. J., 47 ( 5 ), 996 – 1000. | en_US |
dc.identifier.citedreference | Rose, C. W., J. R. Williams, G. C. Sander, and D. A. Barry ( 1983b ), A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element, Soil Sci. Soc. Am. J., 47 ( 5 ), 991 – 995. | en_US |
dc.identifier.citedreference | Rose, C. W., B. Yu, H. Ghadiri, H. Asadi, J. Y. Parlange, W. L. Hogarth, and J. Hussein ( 2007 ), Dynamic erosion of soil in steady sheet flow, J. Hydrol., 333 ( 2–4 ), 449 – 458. | en_US |
dc.identifier.citedreference | Rudolph, A., K. Helming, and H. Diestel ( 1997 ), Effect of antecedent water content and rainfall regime on microrelief changes, Soil Technol., 10, 69 – 81. | en_US |
dc.identifier.citedreference | Sander, G. C., P. B. Hairsine, C. W. Rose, D. Cassidy, J. Y. Parlange, W. L. Hogarth, and I. G. Lisle ( 1996 ), Unsteady soil erosion model, analytical solutions and comparison with experimental results, J. Hydrol., 178 ( 1–4 ), 351 – 367. | en_US |
dc.identifier.citedreference | Sander, G. C., P. B. Hairsine, L. Beuselinck, and G. Govers ( 2002 ), Steady state sediment transport through an area of net deposition: Multisize class solutions, Water Resour. Res., 38 ( 6 ), 1087, doi: 10.1029/2001WR000323. | en_US |
dc.identifier.citedreference | Sander, G. C., T. Zheng, and C. W. Rose ( 2007a ), Update to “Modeling water erosion due to overland flow using physical principles: 1. Sheet flow,” Water Resour. Res., 43, W04408, doi: 10.1029/2006WR005601. | en_US |
dc.identifier.citedreference | Sander, G. C., J. Y. Parlange, D. A. Barry, M. B. Parlange, and W. L. Hogarth ( 2007b ), Limitation of the transport capacity approach in sediment transport modeling, Water Resour. Res., 43, W02403, doi: 10.1029/2006WR005177. | en_US |
dc.identifier.citedreference | Sharmeen, S., and G. R. Willgoose ( 2006 ), The interaction between armouring and particle weathering for eroding landscapes, Earth Surf. Processes Landforms, 31 ( 10 ), 1195 – 1210. | en_US |
dc.identifier.citedreference | Sharmeen, S., and G. R. Willgoose ( 2007 ), A one‐dimensional model for simulating armouring and erosion on hillslopes: 2. Long term erosion and armouring predictions for two contrasting mine spoils, Earth Surf. Processes Landforms, 32 ( 10 ), 1437 – 1453. | en_US |
dc.identifier.citedreference | Simon, A., and J. C. Collison ( 2001 ), Pore‐water pressure effects on the detachment of cohesive streambeds: Seepage forces and matric suction, Earth Surf. Processes Landforms, 26, 1421 – 1442. | en_US |
dc.identifier.citedreference | Svoray, T., and S. Ben‐Said ( 2010 ), Soil loss, water ponding and sediment deposition variations as a consequence of rainfall intensity and land use: A multi‐criteria analysis, Earth Surf. Processes Landforms, 35 ( 2 ), 202 – 216. | en_US |
dc.identifier.citedreference | Walker, J. D., M. T. Walter, J. Y. Parlange, C. W. Rose, H. Meerveld, B. Gao, and A. M. Cohen ( 2007 ), Reduced raindrop‐impact driven soil erosion by infiltration, J. Hydrol., 342 ( 3–4 ), 331 – 335. | en_US |
dc.identifier.citedreference | Ward, P. J., R. T. v. Balen, G. Verstraeten, H. Renssen, and J. Vandenberghe ( 2009 ), The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment, Geomorphology, 103 ( 3 ), 389 – 400. | en_US |
dc.identifier.citedreference | Willgoose, G. R., and S. Sharmeen ( 2006 ), A one‐dimensional model for simulating armouring and erosion on hillslopes: 1. Model development and event‐scale dynamics, Earth Surf. Processes Landforms, 31 ( 8 ), 970 – 991. | en_US |
dc.identifier.citedreference | Woolhiser, D. A., R. E. Smith, and D. C. Goodrich ( 1990 ), KINEROS, A kinematic runoff and erosion model: Documentation and user manual, Rep. ARS‐77, p. 130, Agric. Res. Serv., U.S. Dep. of Agric., Washington, D. C. | en_US |
dc.identifier.citedreference | Wuddivira, M. N., R. J. Stone, and E. I. Ekwue ( 2009 ), Clay, organic matter, and wetting effects on splash detachment and aggregate breakdown under intense rainfall, Soil Sci. Soc. Am. J., 73, 226 – 232. | en_US |
dc.identifier.citedreference | Abbott, M. B. ( 1974 ), Continuous flows, discontinuous flows and numerical analysis, J. Hydraul. Res., 12 ( 4 ), 417 – 467. | en_US |
dc.identifier.citedreference | Abu Hammad, A. H., T. Børresen, and L. E. Haugen ( 2006 ), Effects of rain characteristics and terracing on runoff and erosion under the Mediterranean, Soil Tillage Res., 87 ( 1 ), 39 – 47. | en_US |
dc.identifier.citedreference | Ahmadi, A., M. R. Neyshabouri, H. Rouhipour, H. Asadi, and M. Irannajad ( 2010 ), Factors and mechanisms influencing interrill erodibility at different rainfall intensities, J. Food Agric. Environ., 8 ( 2 ), 996 – 999. | en_US |
dc.identifier.citedreference | Armstrong, A., J. N. Quinton, B. C. P. Heng, and J. H. Chandler ( 2011 ), Variability of interrill erosion at low slopes, Earth Surf. Processes Landforms, 36 ( 1 ), 97 – 106. | en_US |
dc.identifier.citedreference | Armstrong, A., J. N. Quinton, B. C. P. Heng, and G. C. Sander ( 2012 ), Processes controlling the development of a shielding layer on natural soil, Eur. J. Soil Sci., 63 ( 1 ), 54 – 64. | en_US |
dc.identifier.citedreference | Cheng, N. ( 1997 ), Simplified settling velocity formula for sediment particle, J. Hydraul. Eng., 123 ( 2 ), 149 – 152. | en_US |
dc.identifier.citedreference | Cohen, S., G. Willgoose, and G. Hancock ( 2009 ), The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization, J. Geophys. Res., 114, F03001, doi: 10.1029/2008JF001214. | en_US |
dc.identifier.citedreference | Cohen, S., G. Willgoose, and G. Hancock ( 2010 ), The mARM3D spatially distributed soil evolution model: Three‐dimensional model framework and analysis of hillslope and landform responses, J. Geophys. Res., 115, F04013, doi: 10.1029/2009JF001536. | en_US |
dc.identifier.citedreference | Cohen, S., G. Willgoose, and G. Hancock ( 2013 ), Soil‐landscape response to mid and late Quaternary climate fluctuations based on numerical simulations, Quat. Res., 79 ( 3 ), 452 – 457. | en_US |
dc.identifier.citedreference | Defersha, M. B., and A. M. Melesse ( 2012 ), Field‐scale investigation of the effect of land use on sediment yield and runoff using runoff plot data and models in the Mara River basin, Kenya, Catena, 89, 54 – 64. | en_US |
dc.identifier.citedreference | Defersha, M. B., S. Quraishi, and A. Melesse ( 2011 ), The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia, Hydrol. Earth Syst. Sci., 15, 2367 – 2375. | en_US |
dc.identifier.citedreference | Edwards, W. M., and L. B. Owens ( 1991 ), Large storm effects on total soil erosion, J. Soil Water Conserv., 46 ( 1 ), 75 – 78. | en_US |
dc.identifier.citedreference | Fatichi, S., V. Y. Ivanov, and E. Caporali ( 2012 ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysis, J. Adv. Model. Earth Syst., 4, M05002, doi: 10.1029/02011MS000086. | en_US |
dc.identifier.citedreference | Francipane, A., V. Y. Ivanov, L. V. Noto, E. Istanbulluoglu, E. Arnone, and R. L. Bras ( 2012 ), tRIBS‐Erosion: A parsimonious physically‐based model for studying catchment hydro‐geomorphic response, Catena, 92, 216 – 231. | en_US |
dc.identifier.citedreference | Gabet, E. J., and T. Dunne ( 2003 ), Sediment detachment by rain power, Water Resour. Res., 39 ( 1 ), 1002, doi: 10.1029/2001WR000656. | en_US |
dc.identifier.citedreference | Gao, B., M. T. Walter, T. S. Steenhuis, J. Y. Parlange, K. Nakano, C. W. Rose, and W. L. Hogarth ( 2003 ), Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple, J. Hydrol., 277 ( 1–2 ), 116 – 124. | en_US |
dc.identifier.citedreference | Hairsine, P. B., and C. W. Rose ( 1991 ), Rainfall detachment and deposition: Sediment transport in the absence of flow‐driven processes, Soil Sci. Soc. Am. J., 55 ( 2 ), 320 – 324. | en_US |
dc.identifier.citedreference | Hairsine, P. B., and C. W. Rose ( 1992 ), Modeling water erosion due to overland flow using physical principles: 1. Sheet flow, Water Resour. Res., 28 ( 1 ), 237 – 243. | en_US |
dc.identifier.citedreference | Hairsine, P. B., G. C. Sander, C. W. Rose, J. Y. Parlange, W. L. Hogarth, I. Lisle, and H. Rouhipour ( 1999 ), Unsteady soil erosion due to rainfall impact: A model of sediment sorting on the hillslope, J. Hydrol., 220 ( 3–4 ), 115 – 128. | en_US |
dc.identifier.citedreference | Hairsine, P. B., L. Beuselinck, and G. C. Sander ( 2002 ), Sediment transport through an area of net deposition, Water Resour. Res., 38 ( 6 ), 22‐1 – 22‐7, doi: 10.1029/2001WR000265. | en_US |
dc.identifier.citedreference | Harmel, R. D., C. W. Richardson, K. W. King, and P. M. Allen ( 2006 ), Runoff and soil loss relationships for the Texas Blackland Prairies ecoregion, J. Hydrol., 331, 471 – 483. | en_US |
dc.identifier.citedreference | Harmel, R. D., J. V. Bonta, and C. W. Richardson ( 2007 ), The original USDA‐ARS experimental watersheds in Texas and Ohio: Contributions from the past and visions for the future, Trans. ASABE, 50 ( 5 ), 1669 – 1675. | en_US |
dc.identifier.citedreference | Hayhoe, K., J. VanDorn, T. Croley Ii, N. Schlegal, and D. Wuebbles ( 2010 ), Regional climate change projections for Chicago and the US Great Lakes, J. Great Lakes Res., 36, 7 – 21. | en_US |
dc.identifier.citedreference | Heilig, A., et al. ( 2001 ), Testing a mechanistic soil erosion model with a simple experiment, J. Hydrol., 244 ( 1–2 ), 9 – 16. | en_US |
dc.identifier.citedreference | Heng, B. C. P., G. C. Sander, and C. F. Scott ( 2009 ), Modeling overland flow and soil erosion on nonuniform hillslopes: A finite volume scheme, Water Resour. Res., 45, W05423, doi: 10.1029/2008WR007502. | en_US |
dc.identifier.citedreference | Heng, B. C. P., G. C. Sander, A. Armstrong, J. N. Quinton, J. H. Chandler, and C. F. Scott ( 2011 ), Modeling the dynamics of soil erosion and size‐selective sediment transport over nonuniform topography in flume‐scale experiments, Water Resour. Res., 47, W02513, doi: 10.1029/2010WR009375. | en_US |
dc.identifier.citedreference | Hogarth, W. L., C. W. Rose, J. Y. Parlange, G. C. Sander, and G. Carey ( 2004a ), Soil erosion due to rainfall impact with no inflow: A numerical solution with spatial and temporal effects of sediment settling velocity characteristics, J. Hydrol., 294 ( 4 ), 229 – 240. | en_US |
dc.identifier.citedreference | Hogarth, W. L., J. Y. Parlange, C. W. Rose, G. C. Sander, T. S. Steenhuis, and A. Barry ( 2004b ), Soil erosion due to rainfall impact with inflow: An analytical solution with spatial and temporal effects, J. Hydrol., 295 ( 1–4 ), 140 – 148. | en_US |
dc.identifier.citedreference | Ivanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004 ), Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resour. Res., 40, W11102, doi: 10.1029/2004WR003218. | en_US |
dc.identifier.citedreference | Ivanov, V. Y., S. Fatichi, G. D. Jenerette, J. F. Espeleta, P. A. Troch, and T. E. Huxman ( 2010 ), Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation, Water Resour. Res., 46, W09521, doi: 10.1029/02009WR008611. | en_US |
dc.identifier.citedreference | Jomaa, S., D. A. Barry, A. Brovelli, G. C. Sander, J. Y. Parlange, B. C. P. Heng, and H. J. Tromp‐van Meerveld ( 2010 ), Effect of raindrop splash and transversal width on soil erosion: Laboratory flume experiments and analysis with the Hairsine‐Rose model, J. Hydrol., 395 ( 1–2 ), 117 – 132. | en_US |
dc.identifier.citedreference | Jomaa, S., D. A. Barry, B. C. P. Heng, A. Brovelli, G. C. Sander, and J. Y. Parlange ( 2012 ), Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling, Water Resour. Res., 48, W05535, doi: 10.1029/2011WR011255. | en_US |
dc.identifier.citedreference | Jomaa, S., D. A. Barry, B. C. P. Heng, A. Brovelli, G. C. Sander, and J. Y. Parlange ( 2013 ), Effect of antecedent conditions and fixed rock fragment coverage on soil erosion dynamics through multiple rainfall events, J. Hydrol., 484, 115 – 127. | en_US |
dc.identifier.citedreference | Kim, J., V. Y. Ivanov, and N. D. Katopodes ( 2012a ), Hydraulic resistance to overland flow on surfaces with partially submerged vegetation, Water Resour. Res., 48, W10540, doi: 10.1029/12012WR012047. | en_US |
dc.identifier.citedreference | Kim, J., A. Warnock, V. Y. Ivanov, and N. D. Katopodes ( 2012b ), Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow, Adv. Water Resour., 37, 104 – 126. | en_US |
dc.identifier.citedreference | Kim, J., V. Y. Ivanov, and N. D. Katopodes ( 2013 ), Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale, Water Resour. Res., 49, 5134 – 5154, doi: 10.1002/wrcr.20373. | en_US |
dc.identifier.citedreference | Kinnell, P. I. A. ( 1993 ), Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor, Aust. J. Soil Res., 31 ( 3 ), 319 – 332. | en_US |
dc.identifier.citedreference | Kinnell, P. I. A. ( 2005 ), Raindrop‐impact‐induced erosion processes and prediction: A review, Hydrol. Processes, 19 ( 14 ), 2815 – 2844. | en_US |
dc.identifier.citedreference | Kinnell, P. I. A. ( 2006 ), Simulations demonstrating interaction between coarse and fine sediment loads in rain‐impacted flow, Earth Surf. Processes Landforms, 31, 355 – 367. | en_US |
dc.identifier.citedreference | Kinnell, P. I. A. ( 2009 ), The influence of raindrop induced saltation on particle size distributions in sediment discharged by rain‐impacted flow on planar surfaces, Catena, 78 ( 1 ), 2 – 11. | en_US |
dc.identifier.citedreference | Kinnell, P. I. A. ( 2012 ), Raindrop‐induced saltation and the enrichment of sediment discharged from sheet and interrill erosion areas, Hydrol. Processes, 26 ( 10 ), 1449 – 1456. | en_US |
dc.identifier.citedreference | Lane, L. J., M. Hernandez, and M. Nichols ( 1997 ), Processes controlling sediment yield from watersheds as functions of spatial scale, Environ. Modell. Software, 12 ( 4 ), 355 – 369. | en_US |
dc.identifier.citedreference | Laws, J. O., and D. A. Parsons ( 1943 ), The relation of raindrop size to intensity, Eos Trans. AGU, 24, 452 – 460. | en_US |
dc.identifier.citedreference | Le Bissonnais, Y., A. Bruand, and M. Jamagne ( 1989 ), Laboratory experimental study of soil crusting: Relation between aggregate breakdown mechanisms and crust stucture, Catena, 16 ( 4–5 ), 377 – 392. | en_US |
dc.identifier.citedreference | Le Bissonnais, Y., B. Renaux, and H. Delouche ( 1995 ), Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils, Catena, 25 ( 1–4 ), 33 – 46. | en_US |
dc.identifier.citedreference | Leendertse, J. J. ( 1967 ), Aspects of a computational model for long‐period water wave propagation, Memo. RM‐5294‐PR, Rand Corp., Santa Monica, Calif. | en_US |
dc.identifier.citedreference | Liggett, J. A. ( 1968 ), Mathematical flow determination in open channels, J. Eng. Mech. Div. Am. Soc. Civ. Eng., 94 ( EM4 ), 947 – 963. | en_US |
dc.identifier.citedreference | Mamedov, A. I., C. Huangb, and G. J. Levy ( 2006 ), Antecedent moisture content and aging duration effects on seal formation and erosion in smectitic soils, Soil Sci. Soc. Am. J., 70, 832 – 843. | en_US |
dc.identifier.citedreference | Misra, R. K., and C. W. Rose ( 1995 ), An examination of the relationship between erodibility parameters and soil strength, Aust. J. Soil Res., 33 ( 4 ), 715 – 732. | en_US |
dc.identifier.citedreference | Mutchler, C. K., and K. C. McGregor ( 1983 ), Erosion from low slopes, Water Resour. Res., 19 ( 5 ), 1323 – 1326. | en_US |
dc.identifier.citedreference | Nearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner ( 1989 ), A process‐based soil erosion model for USDA‐water erosion prediction project technology, Trans. ASAE, 32 ( 5 ), 1587 – 1593. | en_US |
dc.identifier.citedreference | Nearing, M. A., A. Kimoto, M. H. Nichols, and J. C. Ritchie ( 2005 ), Spatial patterns of soil erosion and deposition in two small, semiarid watersheds, J. Geophys. Res., 110, F04020, doi: 10.1029/2005JF000290. | en_US |
dc.identifier.citedreference | Nearing, M. A., M. H. Nichols, J. J. Stone, K. G. Renard, and J. R. Simanton ( 2007 ), Sediment yields from unit‐source semiarid watersheds at Walnut Gulch, Water Resour. Res., 43, W06426, doi: 10.1029/2006WR005692. | en_US |
dc.identifier.citedreference | Notebaerta, B., G. Verstraetena, P. Wardb, H. Renssenb, and A. V. Rompaey ( 2011 ), Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale, Geomorphology, 126 ( 1–2 ), 18 – 31. | en_US |
dc.identifier.citedreference | Papanicolaou, A. N., J. T. Sanford, D. C. Dermisis, and G. A. Mancilla ( 2010 ), A 1‐D morphodynamic model for rill erosion, Water Resour. Res., 46, W09541, doi: 10.1029/2009WR008486. | en_US |
dc.identifier.citedreference | Phillips, J. ( 2003 ), Alluvial storage and the long‐term stability of sediment yields, Basin Res., 15, 153 – 163. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.