Show simple item record

Processes controlling Southern Ocean shortwave climate feedbacks in CESM

dc.contributor.authorKay, J. E.en_US
dc.contributor.authorMedeiros, B.en_US
dc.contributor.authorHwang, Y.‐t.en_US
dc.contributor.authorGettelman, A.en_US
dc.contributor.authorPerket, J.en_US
dc.contributor.authorFlanner, M. G.en_US
dc.date.accessioned2014-05-21T18:03:25Z
dc.date.available2015-04-01T19:59:07Zen_US
dc.date.issued2014-01-28en_US
dc.identifier.citationKay, J. E.; Medeiros, B.; Hwang, Y.‐t. ; Gettelman, A.; Perket, J.; Flanner, M. G. (2014). "Processes controlling Southern Ocean shortwave climate feedbacks in CESM." Geophysical Research Letters 41(2): 616-622.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106751
dc.description.abstractA climate model (Community Earth System Model with the Community Atmosphere Model version 5 (CESM‐CAM5)) is used to identify processes controlling Southern Ocean (30–70°S) absorbed shortwave radiation (ASR). In response to 21st century Representative Concentration Pathway 8.5 forcing, both sea ice loss (2.6 W m −2 ) and cloud changes (1.2 W m −2 ) enhance ASR, but their relative importance depends on location and season. Poleward of ~55°S, surface albedo reductions and increased cloud liquid water content (LWC) have competing effects on ASR changes. Equatorward of ~55°S, decreased LWC enhances ASR. The 21st century cloud LWC changes result from warming and near‐surface stability changes but appear unrelated to a small (1°) poleward shift in the eddy‐driven jet. In fact, the 21st century ASR changes are 5 times greater than ASR changes resulting from large (5°) naturally occurring jet latitude variability. More broadly, these results suggest that thermodynamics (warming and near‐surface stability), not poleward jet shifts, control 21st century Southern Ocean shortwave climate feedbacks. Key Points Sea ice loss (2.6 W m−2) and clouds (1.2 W m−2) explain RCP8.5 absorbed SW changes Southern Ocean radiatively important clouds (RIC) are low‐level liquid clouds RIC respond primarily to warming and stability changes, not poleward jet shiftsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSouthern Oceanen_US
dc.subject.otherClimate Feedbacksen_US
dc.subject.otherShortwave Radiationen_US
dc.subject.otherJeten_US
dc.subject.otherSea Iceen_US
dc.subject.otherCloudsen_US
dc.titleProcesses controlling Southern Ocean shortwave climate feedbacks in CESMen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106751/1/grl51226.pdf
dc.identifier.doi10.1002/2013GL058315en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceLoeb, N. G., et al. ( 2009 ), Toward optimal closure of the Earth's top‐of‐atmosphere radiation budget, J. Clim., 22, 748 – 766, doi: 10.1175/2008JCLI2637.1.en_US
dc.identifier.citedreferenceBodas‐Salcedo, A., et al. ( 2013 ), Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models, J. Clim., doi: 10.1175/JCLI‐D‐13‐00169.1, in press.en_US
dc.identifier.citedreferenceCeppi, P., Y.‐T. Hwang, D. M. W. Frierson, and D. L. Hartmann ( 2012 ), Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing, Geophys. Res. Lett., 39, L19708, doi: 10.1029/2012GL053115.en_US
dc.identifier.citedreferenceFitzpatrick, M. F., and S. G. Warren ( 2007 ), The relative importance of clouds and sea ice for the solar energy budget of the southern ocean, J. Clim., 20, 941 – 954, doi: 10.1175/JCLI4040.1.en_US
dc.identifier.citedreferenceFlanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedbacks from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4, 151 – 155, doi: 10.1038/ngeo1062.en_US
dc.identifier.citedreferenceGent, P. R., et al. ( 2011 ), The Community Climate System Model Version 4, J. Clim., 24, 4973 – 4991, doi: 10.1175/2011JCLI4083.1.en_US
dc.identifier.citedreferenceGettelman, A., J. E. Kay, and K. M. Shell ( 2012 ), The evolution of climate sensitivity and climate feedbackss in the Community Atmosphere Model, J. Clim., 25, 1453 – 1469, doi: 10.1175/JCLI‐D‐11‐00197.1.en_US
dc.identifier.citedreferenceGrise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka ( 2013 ), The ozone hole indirect effect: Cloud‐radiative anomalies accompanying the poleward shift of the eddy‐driven jet in the Southern Hemisphere, Geophys. Res. Lett., 40, 3688 – 3692, doi: 10.1002/grl.50675.en_US
dc.identifier.citedreferenceHall, A., and M. Visbeck ( 2002 ), Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode, J. Clim., 15, 3043 – 3057.en_US
dc.identifier.citedreferenceHaynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown ( 2011 ), Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget, J. Clim., 24, 5061 – 5080, doi: 10.1175/2011JCLI4052.1.en_US
dc.identifier.citedreferenceHurrell, J., et al. ( 2013 ), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., doi: 10.1175/BAMS‐D‐12‐00121.1.en_US
dc.identifier.citedreferenceHwang, Y.‐T., and D. M. W. Frierson ( 2010 ), Increasing atmospheric poleward energy transport with global warming, Geophys. Res. Lett., 37, L24807, doi: 10.1029/2010GL045440.en_US
dc.identifier.citedreferenceHwang, Y.‐T., and D. M. W. Frierson ( 2013 ), A link between the double intertropical convergence zone problem and cloud biases over the Southern Ocean, Proc. Natl. Acad. Sci., doi: 10.1073/pnas.1213302110.en_US
dc.identifier.citedreferenceKay, J. E., et al. ( 2012 ), Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators, J. Clim., 25, 5190 – 5207, doi: 10.1175/JCLI‐D‐11‐00469.1.en_US
dc.identifier.citedreferenceKidston, J., and E. P. Gerber ( 2010 ), Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology, Geophys. Res. Lett., 37, L09708, doi: 10.1029/2010GL042873.en_US
dc.identifier.citedreferenceLamarque, J.‐F., et al. ( 2011 ), Global and regional evolution of short‐lived radiatively active gases and aerosols in the Representative Concentration Pathways, Clim. Change, doi: 10.1007/s10584‐011‐0155‐0.en_US
dc.identifier.citedreferenceLefebvre, W., and H. Goosse ( 2008 ), Analysis of the projected regional sea‐ice changes in the Southern Ocean during the twenty‐first century, Clim. Dyn., 30, 59 – 76, doi: 10.1007/s00382‐007‐0273‐6.en_US
dc.identifier.citedreferenceMeinshausen, M., et al. ( 2011 ), The RCP greenhouse gas concentrations and their extension from 1765 to 2300, Clim. Change, (Special Issue), doi: 10.1007/s10584‐011‐0156‐z.en_US
dc.identifier.citedreferenceThompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly ( 2011 ), Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741 – 749, doi: 10.1038/ngeo1296.en_US
dc.identifier.citedreferenceTrenberth, K. E., and J. T. Fasullo ( 2010 ), Simulation of present‐day and twenty‐first‐century energy budgets of the Southern Oceans, J. Clim., 23, 440 – 454, doi: 10.1175/2009JCLI3152.1.en_US
dc.identifier.citedreferenceTsushima, Y., S. Emori, T. Ogura, M. Kimoto, M. J. Webb, K. D. Williams, M. A. Ringer, B. J. Soden, B. Li, and N. Andronova ( 2006 ), Importance of the mixed‐phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi‐model study, Clim. Dyn., 27, 113 – 126, doi: 10.1007/s00382‐006‐0127‐7.en_US
dc.identifier.citedreferenceVial, J., J.‐L. Dufresne, and S. Bony ( 2013 ), On the interpretation of inter‐model spread in CMIP5 climate sensitivity estimates, Clim. Dyn., 1–24, doi: 10.1007/s00382‐013‐1725‐9.en_US
dc.identifier.citedreferenceWilliams, K. D., et al. ( 2013 ), The Transpose‐AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models, J. Clim., 26, 3258 – 3274, doi: 10.1175/JCLI‐D‐12‐00429.1.en_US
dc.identifier.citedreferenceYin, J. H. ( 2005 ), A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett., 32, L18701, doi: 10.1029/2005GL023684.en_US
dc.identifier.citedreferenceZelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster ( 2013 ), Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5, J. Clim., 26, 5007 – 5027, doi: 10.1175/JCLI‐D‐12‐00555.1.en_US
dc.identifier.citedreferenceBarnes, E. A., and L. M. Polvani ( 2013 ), Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models, J. Clim., 26, 7117 – 7135, doi: 10.1175/JCLI‐D‐12‐00536.1.en_US
dc.identifier.citedreferenceBender, F. A.‐M., V. Ramanathan, and G. Tselioudis ( 2011 ), Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift, Clim. Dyn., 38, 2037 – 2053, doi: 10.1007/s00382‐011‐1065‐6.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.