Show simple item record

Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast

dc.contributor.authorNatrajan, Rachaelen_US
dc.contributor.authorWilkerson, Paul Men_US
dc.contributor.authorMarchiò, Caterinaen_US
dc.contributor.authorPiscuoglio, Salvatoreen_US
dc.contributor.authorNg, Charlotte KYen_US
dc.contributor.authorWai, Pattyen_US
dc.contributor.authorLambros, Maryou Ben_US
dc.contributor.authorSamartzis, Eleftherios Pen_US
dc.contributor.authorDedes, Konstantin Jen_US
dc.contributor.authorFrankum, Jessicaen_US
dc.contributor.authorBajrami, Ilirjanaen_US
dc.contributor.authorKopec, Alicjaen_US
dc.contributor.authorMackay, Alanen_US
dc.contributor.authorA'hern, Rogeren_US
dc.contributor.authorFenwick, Kerryen_US
dc.contributor.authorKozarewa, Iwankaen_US
dc.contributor.authorHakas, Jarleen_US
dc.contributor.authorMitsopoulos, Costasen_US
dc.contributor.authorHardisson, Daviden_US
dc.contributor.authorLord, Christopher Jen_US
dc.contributor.authorKumar‐sinha, Chandanen_US
dc.contributor.authorAshworth, Alanen_US
dc.contributor.authorWeigelt, Brittaen_US
dc.contributor.authorSapino, Annaen_US
dc.contributor.authorChinnaiyan, Arul Men_US
dc.contributor.authorMaher, Christopher Aen_US
dc.contributor.authorReis‐filho, Jorge Sen_US
dc.date.accessioned2014-05-21T18:03:26Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-05-21T18:03:26Z
dc.date.issued2014-04en_US
dc.identifier.citationNatrajan, Rachael; Wilkerson, Paul M; Marchiò, Caterina ; Piscuoglio, Salvatore; Ng, Charlotte KY; Wai, Patty; Lambros, Maryou B; Samartzis, Eleftherios P; Dedes, Konstantin J; Frankum, Jessica; Bajrami, Ilirjana; Kopec, Alicja; Mackay, Alan; A'hern, Roger; Fenwick, Kerry; Kozarewa, Iwanka; Hakas, Jarle; Mitsopoulos, Costas; Hardisson, David; Lord, Christopher J; Kumar‐sinha, Chandan ; Ashworth, Alan; Weigelt, Britta; Sapino, Anna; Chinnaiyan, Arul M; Maher, Christopher A; Reis‐filho, Jorge S (2014). "Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast." The Journal of Pathology 232(5): 553-565.en_US
dc.identifier.issn0022-3417en_US
dc.identifier.issn1096-9896en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106752
dc.description.abstractMicropapillary carcinoma ( MPC ) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations ( CNAs ) distinct from that of grade‐ and oestrogen receptor ( ER )‐matched invasive carcinomas of no special type ( IC‐NSTs ). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray‐based comparative genomic hybridization ( aCGH ) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs . Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC‐NSTs , and recurrent mutations affecting mitogen‐activated protein kinase family genes and NBPF10 . RNA ‐sequencing analysis identified 17 high‐confidence fusion genes, eight of which were validated and two of which were in‐frame. No recurrent fusions were identified in an independent series of MPCs and IC‐NSTs . Forced expression of in‐frame fusion genes ( SLC2A1–FAF1 and BCAS4–AURKA ) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out‐of‐frame rearrangements was found in one MPC and in 13% of HER2 ‐positive breast cancers, identified through a re‐analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild‐type CDK12 in a CDK12 ‐null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherPARP Inhibitorsen_US
dc.subject.otherBreast Canceren_US
dc.subject.otherMicropapillaryen_US
dc.subject.otherRNA Sequencingen_US
dc.subject.otherFusion Transcriptsen_US
dc.subject.otherSomatic Mutation Profilingen_US
dc.subject.otherCDK12en_US
dc.titleCharacterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breasten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPathologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106752/1/path4325.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106752/2/path4325-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/path.4325en_US
dc.identifier.sourceThe Journal of Pathologyen_US
dc.identifier.citedreferenceIyer MK, Chinnaiyan AM, Maher CA. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 2011; 27: 2903 – 2904.en_US
dc.identifier.citedreferenceEdgren H, Murumagi A, Kangaspeska S, et al. Identification of fusion genes in breast cancer by paired‐end RNA‐sequencing. Genome Biol 2011; 12: R6.en_US
dc.identifier.citedreferenceNatrajan R, Mackay A, Lambros MB, et al. A whole‐genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor‐negative and ‐positive breast cancers. J Pathol 2012; 227: 29 – 41.en_US
dc.identifier.citedreferenceBanerji S, Cibulskis K, Rangel‐Escareno C, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012; 486: 405 – 409.en_US
dc.identifier.citedreferenceThe Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61 – 70.en_US
dc.identifier.citedreferenceRobinson DR, Kalyana‐Sundaram S, Wu YM, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nature Med 2011; 17: 1646 – 1651.en_US
dc.identifier.citedreferenceHa KC, Lalonde E, Li L, et al. Identification of gene fusion transcripts by transcriptome sequencing in BRCA1‐mutated breast cancers and cell lines. BMC Med Genomics 2011; 4: 75.en_US
dc.identifier.citedreferenceKalyana‐Sundaram S, Shankar S, Deroo S, et al. Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer. Neoplasia 2012; 14: 702 – 708.en_US
dc.identifier.citedreferenceGeyer FC, Weigelt B, Natrajan R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol 2010; 220: 562 – 573.en_US
dc.identifier.citedreferenceMarchio C, Natrajan R, Shiu KK, et al. The genomic profile of HER2 ‐amplified breast cancers: the influence of ER status. J Pathol 2008; 216: 399 – 407.en_US
dc.identifier.citedreferenceHernandez L, Wilkerson PM, Lambros MB, et al. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra‐tumour genetic heterogeneity and clonal selection. J Pathol 2012; 227: 42 – 52.en_US
dc.identifier.citedreferenceCoe BP, Ylstra B, Carvalho B, et al. Resolving the resolution of array CGH. Genomics 2007; 89: 647 – 653.en_US
dc.identifier.citedreferenceGunnarsson R, Staaf J, Jansson M, et al. Screening for copy‐number alterations and loss of heterozygosity in chronic lymphocytic leukemia – a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 2008; 47: 697 – 711.en_US
dc.identifier.citedreferenceTan DS, Lambros MB, Natrajan R, et al. Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab Invest 2007; 87: 737 – 754.en_US
dc.identifier.citedreferenceNatrajan R, Weigelt B, Mackay A, et al. An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal‐like, HER2 and luminal cancers. Breast Cancer Res Treat 2010; 121: 575 – 589.en_US
dc.identifier.citedreferenceDuprez R, Wilkerson PM, Lacroix‐Triki M, et al. Immunophenotypic and genomic characterization of papillary carcinomas of the breast. J Pathol 2012; 226: 427 – 441.en_US
dc.identifier.citedreferenceWagle N, Berger MF, Davis MJ, et al. High‐throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2012; 2: 82 – 93.en_US
dc.identifier.citedreferenceDe Mattos‐Arruda L, Bidard FC, Won HH, et al. Establishing the origin of metastatic deposits in the setting of multiple primary malignancies: the role of massively parallel sequencing. Mol Oncol 2013 (Epub ahead of print); DOI: 10.1016/j.molonc.2013.10.006.en_US
dc.identifier.citedreferenceDePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next‐generation DNA sequencing data. Nature Genet 2011; 43: 491 – 498.en_US
dc.identifier.citedreferenceCibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnol 2013; 31: 213 – 219.en_US
dc.identifier.citedreferenceDing J, Bashashati A, Roth A, et al. Feature‐based classifiers for somatic mutation detection in tumour–normal paired sequencing data. Bioinformatics 2012; 28: 167 – 175.en_US
dc.identifier.citedreferenceMcKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Res 2010; 20: 1297 – 1303.en_US
dc.identifier.citedreferenceKoboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22: 568 – 576.en_US
dc.identifier.citedreferenceRobinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nature Biotechnol 2011; 29: 24 – 26.en_US
dc.identifier.citedreferenceTanas MR, Sboner A, Oliveira AM, et al. Identification of a disease‐defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011; 3: 98ra82.en_US
dc.identifier.citedreferenceWilkerson PM, Dedes KJ, Wetterskog D, et al. Functional characterization of EMSY gene amplification in human cancers. J Pathol 2011; 225: 29 – 42.en_US
dc.identifier.citedreferenceDedes KJ, Wetterskog D, Mendes‐Pereira AM, et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med 2010; 2: 53ra75.en_US
dc.identifier.citedreferenceHorlings HM, Weigelt B, Anderson EM, et al. Genomic profiling of histological special types of breast cancer. Breast Cancer Res Treat 2013; 142: 257 – 269.en_US
dc.identifier.citedreferenceEllis MJ, Ding L, Shen D, et al. Whole‐genome analysis informs breast cancer response to aromatase inhibition. Nature 2012; 486: 353 – 360.en_US
dc.identifier.citedreferenceNik‐Zainal S, Alexandrov LB, Wedge DC, et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012; 149: 979 – 993.en_US
dc.identifier.citedreferenceShah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple‐negative breast cancers. Nature 2012; 486: 395 – 399.en_US
dc.identifier.citedreferenceDoublier S, Belisario DC, Polimeni M, et al. HIF‐1 activation induces doxorubicin resistance in MCF7 3‐D spheroids via P‐glycoprotein expression: a potential model of the chemo‐resistance of invasive micropapillary carcinoma of the breast. BMC Cancer 2012; 12: 4.en_US
dc.identifier.citedreferenceVasmatzis G, Johnson SH, Knudson RA, et al. Genome‐wide analysis reveals recurrent structural abnormalities of TP63 and other p53‐related genes in peripheral T‐cell lymphomas. Blood 2012; 120: 2280 – 2289.en_US
dc.identifier.citedreferenceMao X, Boyd LK, Yanez‐Munoz RJ, et al. Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am J Cancer Res 2011; 1: 604 – 617.en_US
dc.identifier.citedreferenceShiu KK, Wetterskog D, Mackay A, et al. Integrative molecular and functional profiling of ERBB2‐amplified breast cancers identifies new genetic dependencies. Oncogene 2013 (Epub ahead of print); DOI: 10.1038/onc.2012.625.en_US
dc.identifier.citedreferenceBlazek D, Kohoutek J, Bartholomeeusen K, et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 2011; 25: 2158 – 2172.en_US
dc.identifier.citedreferenceMenges CW, Altomare DA, Testa JR. FAS‐associated factor 1 (FAF1): diverse functions and implications for oncogenesis. Cell Cycle 2009; 8: 2528 – 2534.en_US
dc.identifier.citedreferenceVader G, Lens SM. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 2008; 1786: 60 – 72.en_US
dc.identifier.citedreferenceZang ZJ, Ong CK, Cutcutache I, et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res 2011; 71: 29 – 39.en_US
dc.identifier.citedreferenceShah SP, Kobel M, Senz J, et al. Mutation of FOXL2 in granulosa‐cell tumors of the ovary. N Engl J Med 2009; 360: 2719 – 2729.en_US
dc.identifier.citedreferenceWetterskog D, Lopez‐Garcia MA, Lambros MB, et al. Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple‐negative and basal‐like breast cancers. J Pathol 2012; 226: 84 – 96.en_US
dc.identifier.citedreferenceHarvey JM, Clark GM, Osborne CK, et al. Estrogen receptor status by immunohistochemistry is superior to the ligand‐binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 1999; 17: 1474 – 1481.en_US
dc.identifier.citedreferenceJacobs TW, Gown AM, Yaziji H, et al. Specificity of HercepTest in determining HER‐2/neu status of breast cancers using the United States Food and Drug Administration‐approved scoring system. J Clin Oncol 1999; 17: 1983 – 1987.en_US
dc.identifier.citedreferenceMackay A, Tamber N, Fenwick K, et al. A high‐resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Res Treat 2009; 118: 481 – 498.en_US
dc.identifier.citedreferenceNatrajan R, Lambros MB, Rodriguez‐Pinilla SM, et al. Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 2009; 15: 2711 – 2722.en_US
dc.identifier.citedreferenceSathirapongsasuti JF, Lee H, Horst BA, et al. Exome sequencing‐based copynumber variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 2011; 27: 2648 – 2654.en_US
dc.identifier.citedreferenceBrough R, Frankum JR, Sims D, et al. Functional viability profiles of breast cancer. Cancer Discov 2011; 1: 260 – 273.en_US
dc.identifier.citedreferenceLakhani SR, Ellis IO, Schnitt SJ, et al. WHO Classification of Tumours of the Breast ( 4th edn ). IARC Press: Lyon, 2012.en_US
dc.identifier.citedreferenceMarchio C, Iravani M, Natrajan R, et al. Mixed micropapillary–ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components. J Pathol 2009; 218: 301 – 315.en_US
dc.identifier.citedreferenceMarchio C, Iravani M, Natrajan R, et al. Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 2008; 215: 398 – 410.en_US
dc.identifier.citedreferenceWeigelt B, Geyer FC, Reis‐Filho JS. Histological types of breast cancer: how special are they? Mol Oncol 2010; 4: 192 – 208.en_US
dc.identifier.citedreferenceWeigelt B, Reis‐Filho JS. Histological and molecular types of breast cancer: is there a unifying taxonomy? Nature Rev Clin Oncol 2009; 6: 718 – 730.en_US
dc.identifier.citedreferencePersson M, Andren Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A 2009; 106: 18740 – 18744.en_US
dc.identifier.citedreferenceTognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6–NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2: 367 – 376.en_US
dc.identifier.citedreferenceBertucci F, Orsetti B, Negre V, et al. Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 2008; 27: 5359 – 5372.en_US
dc.identifier.citedreferenceWeigelt B, Geyer FC, Natrajan R, et al. The molecular underpinning of lobular histological growth pattern: a genome‐wide transcriptomic analysis of invasive lobular carcinomas and grade‐ and molecular subtype‐matched invasive ductal carcinomas of no special type. J Pathol 2010; 220: 45 – 57.en_US
dc.identifier.citedreferenceDing L, Ellis MJ, Li S, et al. Genome remodelling in a basal‐like breast cancer metastasis and xenograft. Nature 2010; 464: 999 – 1005.en_US
dc.identifier.citedreferenceShah SP, Morin RD, Khattra J, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 2009; 461: 809 – 813.en_US
dc.identifier.citedreferenceStephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009; 462: 1005 – 1010.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.