Show simple item record

Top‐Hat and Asymmetric Gaussian‐Based Fitting Functions for Quantifying Directional Single‐Molecule Motion

dc.contributor.authorRowland, David J.en_US
dc.contributor.authorBiteen, Julie S.en_US
dc.date.accessioned2014-05-21T18:03:27Z
dc.date.available2015-06-01T15:48:45Zen_US
dc.date.issued2014-03-17en_US
dc.identifier.citationRowland, David J.; Biteen, Julie S. (2014). "Top‐Hat and Asymmetric Gaussian‐Based Fitting Functions for Quantifying Directional Single‐Molecule Motion." ChemPhysChem 15(4): 712-720.en_US
dc.identifier.issn1439-4235en_US
dc.identifier.issn1439-7641en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106757
dc.description.abstractSingle‐molecule fluorescence permits super‐resolution imaging, but traditional algorithms for localizing these isolated fluorescent emitters assume stationary point light sources. Proposed here are two fitting functions that achieve similar nanometer‐scale localization precision as the traditional symmetric Gaussian function, while allowing, and explicitly accounting for, directed motion. The precision of these methods is investigated through Fisher information analysis, simulation and experiments, and the new fitting functions are then used to measure, for the first time, the instantaneous velocity and direction of motion of live bacteria cells. These new methods increase the information content of single‐molecule images of fast‐moving molecules without sacrificing localization precision, thus permitting slower imaging speeds, and our new fitting functions promise to improve tracking algorithms by calculating velocity and direction during each image acquisition. Single molecules on the move: Two fitting functions are introduced for measuring in‐frame motion of isolated fluorescent emitters. These methods determine the instantaneous directionality and velocity of motion without sacrificing the localization precision. Theory, simulation, and experiments are used to validate the methods, and the fitting algorithms are applied to the motion of live bacteria cells (see picture).en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherInstantaneous Velocityen_US
dc.subject.otherDirected Motionen_US
dc.subject.otherSuper‐Resolutionen_US
dc.subject.otherSingle‐Molecule Studiesen_US
dc.subject.otherFluorescenceen_US
dc.titleTop‐Hat and Asymmetric Gaussian‐Based Fitting Functions for Quantifying Directional Single‐Molecule Motionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106757/1/712_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106757/2/cphc_201300774_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/cphc.201300774en_US
dc.identifier.sourceChemPhysChemen_US
dc.identifier.citedreferenceM. C. DeSantis, S. K. Zareh, X. Li, R. E. Blankenship, Y. M. Wang, Opt. Express 2012, 20, 3057 – 3065.en_US
dc.identifier.citedreferenceJ. Gelles, B. Schnapp, M. Sheetz, Nature 1988, 331, 450 – 453.en_US
dc.identifier.citedreferenceM. K. Cheezum, W. F. Walker, W. H. Guilford, Biophys. J. 2001, 81, 2378 – 2388.en_US
dc.identifier.citedreferenceA. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, P. R. Selvinl, Science 2003, 300, 2061 – 2065.en_US
dc.identifier.citedreferenceS. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro, W. E. Moerner, Proc. Natl. Acad. Sci. USA 2006, 103, 10929 – 10934.en_US
dc.identifier.citedreferenceS. Semrau, A. Pezzarossa, T. Schmidt, Biophys. J. 2011, 100, L19 – L21.en_US
dc.identifier.citedreferenceL. Xiao, L. Wei, C. Liu, Y. He, E. S. Yeung, Angew. Chem. 2012, 124, 4257 – 4260; Angew. Chem. Int. Ed. 2012, 51, 4181 – 4184.en_US
dc.identifier.citedreferenceR. N. Ghosh, W. W. Webb, Biophys. J. 1994, 66, 1301 – 1318.en_US
dc.identifier.citedreferenceC. M. Anderson, G. N. Georgiou, I. E. Morrison, G. V. Stevenson, R. J. Cherry, J. Cell Sci. 1992, 101, 415 – 425.en_US
dc.identifier.citedreferenceK. I. Mortensen, L. S. Churchman, J. A. Spudich, H. Flyvbjerg, Nat. Methods 2010, 7, 377 – 381.en_US
dc.identifier.citedreferenceJ. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, S. W. Hell, Nano Lett. 2011, 11, 209 – 213.en_US
dc.identifier.citedreferenceR. E. Thompson, D. R. Larson, W. W. Webb, Biophys. J. 2002, 82, 2775 – 2783.en_US
dc.identifier.citedreferenceS. Kay, Fundamentals of Statistical Signal Processing, Vol. 1, Prentice Hall PTR, Upper Saddle River, 1993, p. 30.en_US
dc.identifier.citedreferenceR. J. Ober, S. Ram, E. S. Ward, Biophys. J. 2004, 86, 1185 – 1200.en_US
dc.identifier.citedreferenceC. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, Nat. Methods 2010, 7, 373 – 375.en_US
dc.identifier.citedreferenceF. Aguet, D. Van De Ville, M. Unser, Opt. Express 2005, 13, 10503 – 10522.en_US
dc.identifier.citedreferenceJ. Schuster, F. Cichos, C. von Borczyskowski, J. Phys. Chem. A 2002, 106, 5403 – 5406.en_US
dc.identifier.citedreferenceS. K. Zareh, M. C. DeSantis, J. M. Kessler, J.‐L. Li, Y. M. Wang, Biophys. J. 2012, 102, 1685 – 1691.en_US
dc.identifier.citedreferenceB. Huang, W. Wang, M. Bates, X. Zhuang, Science 2008, 319, 810 – 813.en_US
dc.identifier.citedreferenceM. Y. Yüce, A. Jonás, A. Kiraz, A. T. Erdog, Microsc. Microanal. 2012, 18, 781 – 792.en_US
dc.identifier.citedreferenceP. Chiarelli, M. Johal, D. Holmes, J. Casson, J. Robinson, H. Wang, Langmuir 2002, 18, 168 – 173.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.