Show simple item record

A Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau

dc.contributor.authorStaisch, Lydia M.en_US
dc.contributor.authorNiemi, Nathan A.en_US
dc.contributor.authorHong, Changen_US
dc.contributor.authorClark, Marin K.en_US
dc.contributor.authorRowley, David B.en_US
dc.contributor.authorCurrie, Brianen_US
dc.date.accessioned2014-05-23T15:58:53Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationStaisch, Lydia M.; Niemi, Nathan A.; Hong, Chang; Clark, Marin K.; Rowley, David B.; Currie, Brian (2014). "A Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau." Tectonics 33(3): 281-301.en_US
dc.identifier.issn0278-7407en_US
dc.identifier.issn1944-9194en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106814
dc.description.abstractThe Fenghuoshan Group marks the initiation of terrestrial deposition in the Hoh Xil Basin and preserves the first evidence of uplift above sea level of northern Tibet. The depositional age of the Fenghuoshan Group is debated as are the stratigraphic relationships between the Fenghuoshan Group and other terrestrial sedimentary units in the Hoh Xil Basin. We present new radiometric dates and a compilation of published biostratigraphic data which are used to reinterpret existing magnetostratigraphic data from the Fenghuoshan Group. From these data, we infer an 85–51 Ma depositional age range for the Fenghuoshan Group. U‐Pb detrital zircon age spectra from this unit are compared to age spectra from Tibetan terranes and Mesozoic sedimentary sequences to determine a possible source terrane for Fenghuoshan Group strata. We propose that these strata were sourced from the Qiangtang Terrane and may share a common sediment source with Cretaceous sedimentary rocks in Nima Basin. Field relationships and compiled biostratigraphic data indicate that the Fenghuoshan and Tuotuohe Groups are temporally distinct units. We report late Oligocene ages for undeformed basalt flows that cap tilted Fenghuoshan Group strata. Together, our age constraints and field relationships imply exhumation of the central Qiangtang Terrane from the Late Cretaceous to earliest Eocene, followed by Eocene‐Oligocene deformation, and shortening of the northern Qiangtang and southern Songpan‐Ganzi terranes. Crustal shortening within the Hoh Xil Basin ceased by late Oligocene time as is evident from flat‐lying basaltic rocks, which cap older, deformed strata. Key Points The Fenghuoshan Group was deposited from late Cretaceous to early Eocene time The Fenghuoshan Group was likely sourced from the central Qiangtang Terrane Crustal shortening of the Hoh Xil Basin occurred from Eocene to Oligocene timeen_US
dc.publisherElsevieren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherTibeten_US
dc.subject.otherHoh Xil Basinen_US
dc.subject.otherTertiaryen_US
dc.subject.otherCretaceousen_US
dc.subject.otherBasin Developmenten_US
dc.subject.otherStratigraphyen_US
dc.titleA Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateauen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/1/ts02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/2/fs02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/3/tect20113.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/4/ts06.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/5/fs06.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/6/ts03.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/7/fs03.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/8/ts07.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/9/fs07.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/10/fs04.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/11/ts04.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/12/fs01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/13/ts08.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/14/ts01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/15/fs05.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106814/16/ts05.pdf
dc.identifier.doi10.1002/2013TC003367en_US
dc.identifier.sourceTectonicsen_US
dc.identifier.citedreferenceRowley, D. B. ( 1996 ), Age of initiation of collision between India and Asia: A review of stratigraphic data, Earth Planet. Sci. Lett., 145 ( 1 ), 1 – 13.en_US
dc.identifier.citedreferenceSong, Z., and F. Huang ( 1997 ), Comparison of palynomorph assemblages from the Cretaceous/Tertiary boundary interval in western Europe, northwest Africa and southeast China, Cretaceous Res., 18 ( 6 ), 865 – 871.en_US
dc.identifier.citedreferenceSong, Z., Y. Zheng, and J. Liu ( 1995 ), Palynological assemblages across the Cretaceous/Tertiary boundary in northern Jiangsu, eastern China, Cretaceous Res., 16 ( 4 ), 465 – 482.en_US
dc.identifier.citedreferenceSpurlin, M. S., A. Yin, B. K. Horton, J. Zhou, and J. Wang ( 2005 ), Structural evolution of the Yushu‐Nangqian region and its relationship to syncollisional igneous activity, east‐central Tibet, Geol. Soc. Am. Bull., 117 ( 9–10 ), 1293 – 1317, doi: 10.1130/B25572.1.en_US
dc.identifier.citedreferenceStyron, R. H., M. Taylor, and K. Okoronkwo ( 2010 ), Database of active structures from the Indo‐Asian collision, Eos Trans. AGU, 91 ( 20 ), 181 – 182, doi: 10.1029/2010EO200001.en_US
dc.identifier.citedreferenceTapponnier, P., X. Zhiqin, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, and Y. Jingsui ( 2001 ), Oblique stepwise rise and growth of the Tibet Plateau, Science, 294, 1671 – 1677.en_US
dc.identifier.citedreferenceTaylor, M., and A. Yin ( 2009 ), Active structures of the Himalayan‐Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere, 5 ( 3 ), 199 – 214.en_US
dc.identifier.citedreferenceVan Itterbeeck, J., P. Missiaen, A. Folie, V. S. Markevich, D. Van Damme, G. Dian‐Yong, and T. Smith ( 2007 ), Woodland in a fluvio‐lacustrine environment on the dry Mongolian Plateau during the late Paleocene: Evidence from the mammal bearing Subeng section (Inner Mongolia, PR China), Palaeogeogr. Palaeoclimatol. Palaeoecol., 243 ( 1 ), 55 – 78.en_US
dc.identifier.citedreferenceWang, C., X. Zhao, Z. Liu, P. C. Lippert, S. A. Graham, R. S. Coe, H. Yi, L. Zhu, S. Liu, and Y. Li ( 2008 ), Constraints on the early uplift history of the Tibetan Plateau, Proc. Natl. Acad. Sci. U. S. A., 105 ( 13 ), 4987 – 4992, doi: 10.1073/pnas.0703595105.en_US
dc.identifier.citedreferenceWang, Q., et al. ( 2008 ), Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central‐western Qiangtang high‐K calc‐alkaline andesites, dacites and rhyolites, Earth Planet. Sci. Lett., 272 ( 1–2 ), 158 – 171, doi: 10.1016/j.epsl.2008.04.034.en_US
dc.identifier.citedreferenceWeislogel, A. L., S. A. Graham, E. Z. Chang, J. L. Wooden, G. E. Gehrels, and H. Yang ( 2006 ), Detrital zircon provenance of the Late Triassic Songpan–Ganzi complex: Sedimentary record of collision of the north and south China blocks, Geology, 34, 97 – 100, doi: 10.1130/G21929.1.en_US
dc.identifier.citedreferenceWeislogel, A. L., S. A. Graham, E. Z. Chang, J. L. Wooden, and G. E. Gehrels ( 2010 ), Detrital zircon provenance from three turbidite depocenters of the Middle–Upper Triassic Songpan–Ganzi complex, central China, record of collision tectonics, erosional exhumation, and sediment production, Geol. Soc. Am. Bull., 122, 1969 – 1990.en_US
dc.identifier.citedreferenceWen, D., D. Liu, S. Chung, M. Chu, J. Ji, Q. Zhang, B. Song, T. Lee, M. Yeh, and C. Lo ( 2008 ), Zircon SHRIMP U–Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet, Chem. Geol., 252 ( 3–4 ), 191 – 201, doi: 10.1016/j.chemgeo.2008.03.003.en_US
dc.identifier.citedreferenceWu, Z., P. Ye, D. Hu, W. Zhang, and C. Zhou ( 2007 ), U‐Pb isotopic dating of zircons from porphyry granite of the Fenghuoshan Mountains, northern Tibetan Plateau and its geological significance, Geoscience, 21 ( 3 ), 435 – 442.en_US
dc.identifier.citedreferenceWu, Z., P. J. Barosh, Z. Wu, D. Hu, X. Zhao, and P. Ye ( 2008 ), Vast early Miocene lakes of the central Tibetan Plateau, Geol. Soc. Am. Bull., 120 ( 9–10 ), 1326 – 1337, doi: 10.1130/B26043.1.en_US
dc.identifier.citedreferenceXu, R. H., U. Schärer, and C. J. Allègre ( 1985 ), Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study, J. Geol., 93 ( 1 ), 41 – 57.en_US
dc.identifier.citedreferenceYe, C. ( 1994 ), Succession of Cypridacea (Ostracoda) and nonmarine Cretaceous stratigraphy of China, Cretaceous Res., 15 ( 3 ), 285 – 303.en_US
dc.identifier.citedreferenceYi, H., X. Zhao, J. Lin, Z. Shi, B. Li, and B. Zhao ( 2004 ), Magnetostratigraphic studies of tertiary continental redbeds from the Wulanwula lake area of northern Tibetan Plateau and their geologic significance, Acta Geoscientia Sin., 25, 633 – 638.en_US
dc.identifier.citedreferenceYi, H., C. Wang, Z. Shi, J. Lin, and L. Zhu ( 2008 ), Early uplift history of the Tibetan Plateau: Records from paleocurrents and paleodrainage in the Hoh Xil Basin, Acta Geol. Sin., 82 ( 1 ), 206 – 213.en_US
dc.identifier.citedreferenceYin, J., J. Xu, C. Liu, and H. Li ( 1988 ), The Tibetan Plateau: Regional stratigraphic context and previous work, Phil. Trans. R. Soc. A, 327 ( 1594 ), 5 – 52.en_US
dc.identifier.citedreferenceYin, A., and T. M. Harrison ( 2000 ), Geologic Evolution of the Himalayan‐Tibetan Orogen, Annu. Rev. Earth Planet. Sci., 28, 211 – 280.en_US
dc.identifier.citedreferenceYin, A., Y. Q. Dang, L. C. Wang, W. M. Jiang, S. P. Zhou, X. H. Chen, G. E. Gehrels, and M. W. McRivette ( 2008 ), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam Basin, Geol. Soc. Am. Bull., 120 ( 7–8 ), 813 – 846, doi: 10.1130/B26180.1.en_US
dc.identifier.citedreferenceZachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups ( 2001 ), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292 ( 5517 ), 686 – 693.en_US
dc.identifier.citedreferenceZhao, W., and W. J. Morgan ( 1987 ), Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study, Tectonics, 6 ( 4 ), 489 – 504.en_US
dc.identifier.citedreferenceZhang, P. Z., et al. ( 2004 ), Continuous deformation of the Tibetan Plateau from Global Positioning System data, Geology, 32 ( 9 ), 809 – 812, doi: 10.1130/G20554.1.en_US
dc.identifier.citedreferenceZhang, Z., Z. Liu, Z. Wang, Y. Zhang, and D. Ye ( 2007 ), Ostracod Biostratigraphy of the Late Cretaceous Qingshankou Formation in the Songliao Basin, Acta Geologica Sinica, 81 ( 5 ), 727 – 737.en_US
dc.identifier.citedreferenceZhong, X. ( 1989 ), Fenghuoshan Group geological era, Tanggula Qinghai, Northwestern Geol., 1989 ( 6 ), 1 – 6.en_US
dc.identifier.citedreferenceAllmendinger, R. W., R. Reilinger, and J. Loveless ( 2007 ), Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano, Tectonics, 26, TC3013, doi: 10.1029/2006TC002030.en_US
dc.identifier.citedreferenceAn, Y., Z. Deng, and Y. Zhuang ( 2004 ), Characteristics of the Fenghuoshan Group's material and its era discussion, Northwestern Geol., 37 ( 1 ), 63 – 68.en_US
dc.identifier.citedreferenceArgand, E. ( 1924 ), La Tectonique de l'Asie, Proc. Int. Geol. Congr., 7, 170 – 372.en_US
dc.identifier.citedreferenceBershaw, J., S. M. Penny, and C. N. Garzione ( 2012 ), Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate, J. Geophys. Res., 117, D02110, doi: 10.1029/2011JD016132.en_US
dc.identifier.citedreferenceBoutelier, D., A. Chemenda, and J. P. Burg ( 2003 ), Subduction versus accretion of intra‐oceanic volcanic arcs: Insight from thermo‐mechanical analogue experiments, Earth Planet. Sci. Lett., 212 ( 1–2 ), 31 – 45, doi: 10.1016/S0012‐821X(03)00239‐5.en_US
dc.identifier.citedreferenceBruguier, O., J. R. Lancelot, and J. Malavielle ( 1997 ), U‐Pb dating on single detrital zircon grains from the Triassic Songpan‐Ganzi flysch (central China): Provenance and tectonic correlations, Earth Planet. Sci. Lett., 152, 217 – 231, doi: 10.1016/S0012‐821X(97)00138‐6.en_US
dc.identifier.citedreferenceBurg, J. P., F. Proust, P. Tapponnier, and G. M. Chen ( 1983 ), Deformation phases and tectonic evolution of the Lhasa block (southern Tibet, China), Eclogae Geol. Helv., 76 ( 3 ), 643 – 665.en_US
dc.identifier.citedreferenceChen, P. J. ( 1988 ), Distribution and migration of the Jehol Fauna with reference to non‐marine Jurassic‐Cretaceous boundary in China, Acta Palaeontologica Sin., 27, 659 – 683.en_US
dc.identifier.citedreferenceChen, L., and Y. S. Xie ( 2011 ), Discussion of Paleocene‐Eocene boundary of SanShui Basin, Adv. Mater. Res., 236, 2487 – 2490.en_US
dc.identifier.citedreferenceClark, M. K., K. A. Farley, D. Zheng, Z. Wang, and A. R. Duvall ( 2010 ), Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages, Earth Planet. Sci. Lett., 296 ( 1–2 ), 78 – 88, doi: 10.1016/j.epsl.2010.04.051.en_US
dc.identifier.citedreferenceCloos, M. ( 1993 ), Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts, Geol. Soc. Am. Bull., 105 ( 6 ), 715 – 737.en_US
dc.identifier.citedreferenceCondon, D., B. Schoene, S. Bowring, R. Parrish, N. Mclean, S. Noble, and Q. Crowley ( 2007 ), EARTHTIME: Isotopic tracers and optimized solutions for high‐precision U‐Pb ID‐TIMS geochronology, Eos Trans. AGU, 88 (52), Fall Meet. Suppl., Abstract V41E–06.en_US
dc.identifier.citedreferenceCrane, P. R., and R. A. Stockey ( 1987 ), Betula leaves and reproductive structures from the middle Eocene of British Columbia, Canada, Can. J. Bot., 65 ( 12 ), 2490 – 2500.en_US
dc.identifier.citedreferenceCrowley, J. L., B. Schoene, and S. A. Bowring ( 2007 ), U‐Pb dating of zircon in the Bishop Tuff at the millennial scale, Geology, 35, 1123 – 1126.en_US
dc.identifier.citedreferenceCyr, A. J., B. S. Currie, and D. B. Rowley ( 2005 ), Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north‐central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau, J. Geol., 113 ( 5 ), 517 – 533, doi: 10.1086/431907.en_US
dc.identifier.citedreferenceDai, J., X. Zhao, C. Wang, L. Zhu, Y. Li, and D. Finn ( 2012 ), The vast proto‐Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin, Gondwana Res., 22 ( 2 ), 434 – 446, doi: 10.1016/j.gr.2011.08.019.en_US
dc.identifier.citedreferenceDai, J., C. Wang, J. Hourigan, Z. Li, and G. Zhuang ( 2013 ), Exhumation history of the Gangdese batholith, southern Tibetan Plateau: Evidence from apatite and zircon (U‐Th)/He thermochronology, J. Geol., 121 ( 2 ), 155 – 172, doi: 10.1086/669250.en_US
dc.identifier.citedreferenceDeCelles, P. G., P. Kapp, L. Ding, and G. E. Gehrels ( 2007a ), Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain, Geol. Soc. Am. Bull., 119 ( 5–6 ), 654 – 680, doi: 10.1130/B26074.1.en_US
dc.identifier.citedreferenceDeCelles, P. G., J. Quade, P. Kapp, M. Fan, D. L. Dettman, and L. Ding ( 2007b ), High and dry in central Tibet during the late Oligocene, Earth Planet. Sci. Lett., 253, 389 – 401, doi: 10.1016/j.epsl.2006.11.001.en_US
dc.identifier.citedreferenceDewey, J. F. ( 1988 ), Extensional Collapse of Orogens, Tectonics, 7 ( 6 ), 1123 – 1139.en_US
dc.identifier.citedreferenceDilek, Y. ( 2006 ), Collision tectonics of the Mediterranean region: Causes and consequences, Geol. Soc. Am. Spec. Pap., 409, 1 – 13, doi: 10.1130/2006.2409(01).en_US
dc.identifier.citedreferenceDuan, Z., Y. Li, Y. Zhang, Y. Li, and M. Wang ( 2005 ), Zircon U‐Pb age, continent dynamics significance and geochemical characteristics of the Mesozoic and Cenozoic granites from the Tanggula Range in the Qinghai‐Tibetan Plateau, Acta Geol. Sin., 79 ( 1 ), 88 – 97.en_US
dc.identifier.citedreferenceDuan, Q., K. X. Zhang, J. Wang, H. Yao, and J. Bu ( 2007 ), Sporopollen assemblage from the Totohe Formation and its stratigraphic significance in the Tanggula Mountains, northern Tibet, Earth Sci.‐J. China Univ. Geosci., 32 ( 5 ), 629 – 637.en_US
dc.identifier.citedreferenceDuan, Z., Y. Li, Z. Shen, X. Zhu, and C. Zhong ( 2007 ), Analysis of the evolution of the Cenozoic ecological environment and process of plateau surface uplift in the Wenquan area in the interior of the Qinghai‐Tibet Plateau, Geol. China, 34 ( 4 ), 688 – 696.en_US
dc.identifier.citedreferenceDuan, Q., K. Zhang, J. Wang, H. Yao, and Z. Niu ( 2008 ), Oligocene Palynoflora, Paleovegetation and Paleoclimate in the Tanggula Mountains, northern Tibet, Acta Micropalaeontol. Sin., 25 ( 2 ), 185 – 195.en_US
dc.identifier.citedreferenceDupont‐Nivet, G., B. K. Horton, R. F. Butler, J. Wang, J. Zhou, and G. L. Waanders ( 2004 ), Paleogene clockwise tectonic rotation of the Xining‐Lanzhou region, northeastern Tibetan Plateau, J. Geophys. Res., 109, B04401, doi: 10.1029/2003JB002620.en_US
dc.identifier.citedreferenceDupont‐Nivet, G., P. C. Lippert, D. J. van Hinsbergen, M. J. Meijers, and P. Kapp ( 2010 ), Palaeolatitude and age of the Indo–Asia collision: Palaeomagnetic constraints, Geophys. J. Int., 182 ( 3 ), 1189 – 1198.en_US
dc.identifier.citedreferenceDuvall, A. R., M. K. Clark, B. A. van der Pluijm, and C. Li ( 2011 ), Direct dating of Eocene reverse faulting in northeastern Tibet using Ar‐dating of fault clays and low‐temperature thermochronometry, Earth Planet. Sci. Lett., 304 ( 3–4 ), 520 – 526, doi: 10.1016/j.epsl.2011.02.028.en_US
dc.identifier.citedreferenceDuvall, A. R., M. K. Clark, E. Kirby, K. A. Farley, W. H. Craddock, C. Li, and D. Y. Yuan ( 2013 ), Low‐temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late‐stage orogenesis, Tectonics, 32, 1190 – 1211, doi: 10.1002/tect.20072.en_US
dc.identifier.citedreferenceEngland, P., and D. McKenzie ( 1982 ), A thin viscous sheet model for continental deformation, Geophys. J. Int., 70 ( 2 ), 295 – 321, doi: 10.1111/j.1365-246X.1982.tb04969.x.en_US
dc.identifier.citedreferenceEngland, P., and M. Searle ( 1986 ), The Cretaceous‐Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet, Tectonics, 5 ( 1 ), 1 – 14.en_US
dc.identifier.citedreferenceEngland, P., and G. Houseman ( 1986 ), Finite strain calculations of continental deformation: 2. Comparison with the India‐Asia Collision Zone, J. Geophys. Res., 91 ( B3 ), 3664 – 3676.en_US
dc.identifier.citedreferenceFu, B., and Y. Awata ( 2007 ), Displacement and timing of left‐lateral faulting in the Kunlun fault zone, northern Tibet, inferred from geologic and geomorphic features, J. Asian Earth Sci., 29 ( 2–3 ), 253 – 265, doi: 10.1016/j.jseaes.2006.03.004.en_US
dc.identifier.citedreferenceGan, W., P. Zhang, Z.‐K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng ( 2007 ), Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements, J. Geophys. Res., 112, B08416, doi: 10.1029/2005JB004120.en_US
dc.identifier.citedreferenceGehrels, G. E. ( 2000 ), Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, Geol. Soc. Am., 347, 1 – 17, doi: 10.1130/0‐8137‐2347‐7.1.en_US
dc.identifier.citedreferenceGehrels, G. P., et al. ( 2011 ), Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen, Tectonics, 30, TC5016, doi: 10.1029/2011TC002868.en_US
dc.identifier.citedreferenceGerstenberger, H., and G. Haase ( 1997 ), A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chem. Geol., 136, 309 – 312.en_US
dc.identifier.citedreferenceGradstein, F. M., J. G. Ogg, M. Schmitz, and G. Ogg ( 2012 ), Geomagnetic polarity time scale, in The Geologic Time Scale 2012 2‐Volume Set, pp. 85 – 113, Elsevier, B.V.en_US
dc.identifier.citedreferenceHarrison, T. M., P. Copeland, W. S. F. Kidd, and A. Yin ( 1992 ), Raising Tibet, Science, 255 ( 5052 ), 1663 – 1670.en_US
dc.identifier.citedreferenceHetzel, R., I. Dunkl, V. Haider, M. Strobl, H. von Eynatten, L. Ding, and D. Frei ( 2011 ), Peneplain formation in southern Tibet predates the India‐Asia collision and plateau uplift, Geology, 39 ( 10 ), 983 – 986, doi: 10.1130/G32069.1.en_US
dc.identifier.citedreferenceHorton, B. K., A. Yin, M. S. Spurlin, J. Zhou, and J. Wang ( 2002 ), Paleocene–Eocene syncontractional sedimentation in narrow, lacustrine‐dominated basins of east‐central Tibet, Geol. Soc. Am. Bull., 114 ( 7 ), 771 – 786, doi: 10.1130/0016‐7606(2002)114<0771.en_US
dc.identifier.citedreferenceHorton, B. K., G. Dupont‐Nivet, J. Zhou, G. L. Waanders, R. F. Butler, and J. Wang ( 2004 ), Mesozoic‐Cenozoic evolution of the Xining‐Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results, J. Geophys. Res., 109, B04402, doi: 10.1029/2003JB002913.en_US
dc.identifier.citedreferenceJaffey, A. H., K. F. Flynn, L. E. Glendenin, W. C. Bentley, and A. M. Essling ( 1971 ), Precision measurements of half‐lives and specific activities of 235 U and 238 U, Phys. Rev. C, 4, 1889 – 1906.en_US
dc.identifier.citedreferenceJi, L. ( 1994 ), On the problem of the definition of the Fenghuoshan Group in the Tanggula Mountains area, Qinghai, Reg. Geol. China, 1994 ( 4 ), 373 – 380.en_US
dc.identifier.citedreferenceJolivet, M., M. Brunel, D. Seward, Z. Xu, J. Yang, F. Roger, and P. Tapponnier ( 2001 ), Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission‐track constraints, Tectonophysics, 343 ( 1–2 ), 111 – 134, doi: 10.1016/S0040‐1951(01)00196‐2.en_US
dc.identifier.citedreferenceJolivet, M., M. Brunel, D. Seward, Z. Xu, J. Yang, J. Malavieille, F. Roger, A. Leyreloup, N. Arnaud, and C. Wu ( 2003 ), Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault, Tectonics, 22 ( 5 ), 1052, doi: 10.1029/2002TC001428.en_US
dc.identifier.citedreferenceKapp, P., A. Yin, T. M. Harrison, and L. Ding ( 2005 ), Cretaceous‐Tertiary shortening, basin development, and volcanism in central Tibet, Geol. Soc. Am. Bull., 117 ( 7 ), 865 – 878, doi: 10.1130/B25595.1.en_US
dc.identifier.citedreferenceKapp, P., P. G. DeCelles, G. E. Gehrels, M. Heizler, and L. Ding ( 2007a ), Geological records of the Lhasa‐Qiangtang and Indo‐Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119 ( 7–8 ), 917 – 933, doi: 10.1130/B26033.1.en_US
dc.identifier.citedreferenceKapp, P., P. G. DeCelles, A. L. Leier, J. M. Fabijanic, S. He, A. Pullen, and G. E. Gehrels ( 2007b ), The Gangdese retroarc thrust belt revealed, GSA Today, 17 ( 7 ), 4 – 9.en_US
dc.identifier.citedreferenceKarplus, M. S., W. Zhao, S. L. Klemperer, Z. Wu, J. Mechie, D. Shi, L. D. Brown, and C. Chen ( 2011 ), Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide‐angle seismic data, J. Geophys. Res., 116, B07301, doi: 10.1029/2010JB007911.en_US
dc.identifier.citedreferenceKidd, W. S. F., Y. Pan, C. Chang, M. P. Coward, J. F. Dewey, A. Gansser, P. Molnar, R. M. Shackleton, and S. Yiyin ( 1988 ), Geological mapping of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau Geotraverse route. Philosophical Transactions of the Royal Society of London. Series A, Math. Phys. Sci., 327 ( 1594 ), 287 – 305.en_US
dc.identifier.citedreferenceKong, X., A. Yin, and T. M. Harrison ( 1997 ), Evaluating the role of preexisting weaknesses and topographic distributions in the Indo‐Asian collision by use of a thin‐shell numerical model, Geology, 25, 527 – 530, doi: 10.1130/0091‐7613(1997)025<0527.en_US
dc.identifier.citedreferenceKrogh, T. E. ( 1973 ), A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta., 37, 485 – 494.en_US
dc.identifier.citedreferenceLechler, A. R., and N. A. Niemi ( 2011 ), Controls on the spatial variability of modern meteoric δ18 O: Empirical constraints from the western U.S. and East Asia and implications for stable isotope studies, Am. J. Sci., 311 ( 8 ), 664 – 700, doi: 10.2475/08.2011.02.en_US
dc.identifier.citedreferenceLeeder, M. R., A. B. Smith, and J. Yin ( 1988 ), Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse, Phil. Trans. R. Soc. A, 327 ( 1594 ), 107 – 143.en_US
dc.identifier.citedreferenceLeier, A. L., P. Kapp, G. E. Gehrels, and P. G. DeCelles ( 2007b ), Detrital zircon geochronology of Carboniferous‐Cretaceous strata in the Lhasa Terrane, southern Tibet, Basin Res., 19 ( 3 ), 361 – 378, doi: 10.1111/j.1365‐2117.2007.00330.x.en_US
dc.identifier.citedreferenceLi, P., and L. Yuan ( 1990 ), The Fenghuoshan Group of palynological assemblages and their meaning, Northwestern Geol., 1990 ( 4 ), 7 – 9.en_US
dc.identifier.citedreferenceLi, W., and Z. Liu ( 1994 ), The Cretaceous palynofloras and their bearing on stratigraphic correlation in China, Cretaceous Res., 15 ( 3 ), 333 – 365.en_US
dc.identifier.citedreferenceLi, W., Z. Song, Z. Liou, C. Li, Z. Li, and H. Li ( 2005 ), Geologic characteristics and ore‐controls of the Fenghuoshan copper ore deposit, Qinghai province, China, in Mineral Deposit Research: Meeting the Global Challenge, pp. 153 – 156, Springer, Berlin.en_US
dc.identifier.citedreferenceLi, Y., C. Wang, C. Ma, G. Xu, and X. Zhao ( 2011 ), Balanced cross‐section and crustal shortening analysis in the Tanggula‐Tuotuohe area, northern Tibet, J. Earth Sci., 22 ( 1 ), 1 – 10, doi: 10.1007/s12583‐011‐0152‐2.en_US
dc.identifier.citedreferenceLi, Y., C. Wang, X. Zhao, A. Yin, and C. Ma ( 2012 ), Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet, Gondwana Res., 22 ( 2 ), 482 – 492, doi: 10.1016/j.gr.2011.11.017.en_US
dc.identifier.citedreferenceLiu, Z., and C. Wang ( 2001a ), Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil Basin, northern Tibet, Sediment. Geol., 140 ( 3–4 ), 251 – 270, doi: 10.1016/S0037‐0738(00)00188‐3.en_US
dc.identifier.citedreferenceLiu, Z., and C. Wang ( 2001b ), Depositional Environment of the Tertiary Fenghuoshan Group in the Hoh Xil Basin, Northern Tibetan Plateau, Acta Sedimentologica Sin., 19 ( 1 ), 28 – 34.en_US
dc.identifier.citedreferenceLiu, Z., C. Wang, and H. Yi ( 2001 ), Evolution and Mass Accumulation of the Cenozoic Hoh Xil Basin, Northern Tibet, J. Sediment. Res., 71 ( 6 ), 971 – 984.en_US
dc.identifier.citedreferenceLiu, Z., X. Zhao, C. Wang, S. Liu, and H. Yi ( 2003 ), Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: Implications for the Cenozoic tectonic history of the Tibetan Plateau, Geophys. J. Int., 154 ( 2 ), 233 – 252, doi: 10.1046/j.1365‐246X.2003.01986.x.en_US
dc.identifier.citedreferenceLiu, Z., C. Wang, W. Jin, H. Yi, H. Zheng, X. Zhao, and Y. Li ( 2005 ), Oligo‐Miocene depositional environment of the Tuotuohe Basin, central Tibetan Plateau, Acta Sediment Sin., 23 ( 2 ), 210 – 216.en_US
dc.identifier.citedreferenceManchester, S. R. ( 1987 ), The fossil history of the Juglandaceae, Monogr. Syst. Bot. Missouri Bot. Gard, 21, 1 – 137.en_US
dc.identifier.citedreferenceMateer, N. J., and P. Chen ( 1992 ), A review of the nonmarine Cretaceous‐Tertiary transition in China, Cretaceous Res., 13 ( 1 ), 81 – 90.en_US
dc.identifier.citedreferenceMattinson, J. M. ( 2005 ), Zircon U‐Pb chemical abrasion (CA‐TIMS) method: Combined annealing and multi‐step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47 – 66.en_US
dc.identifier.citedreferenceMolnar, P., and H. Lyon‐Caen ( 1989 ), Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins, Geophys. J. Int., 99 ( 1 ), 123 – 154, doi: 10.1111/j.1365‐246X.1989.tb02020.x.en_US
dc.identifier.citedreferenceMolnar, P., and J. Stock ( 2009 ), Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, 28, TC3001, doi: 10.1029/2008TC002271.en_US
dc.identifier.citedreferenceMolnar, P., P. England, and J. Martinod ( 1993 ), Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 31 ( 4 ), 357 – 396.en_US
dc.identifier.citedreferenceMurphy, M. A., A. Yin, T. M. Harrison, S. B. Dürr, Z. Chen, F. J. Ryerson, W. S. F. Kidd, X. Wang, and X. Zhou ( 1997 ), Did the Indo‐Asian collision alone create the Tibetan plateau?, Geology, 25 ( 8 ), 719 – 722, doi: 10.1130/0091‐7613(1997)025<0719:DTIACA>2.3.CO;2.en_US
dc.identifier.citedreferenceNajman, Y., et al. ( 2010 ), Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints, J. Geophys. Res., 115, B12416, doi: 10.1029/2010JB007673.en_US
dc.identifier.citedreferenceOrth, K., and J. McPhie ( 2003 ), Textures formed during emplacement and cooling of a Palaeoproterozoic, small‐volume rhyolitic sill, J. Volcanol. Geotherm. Res., 128 ( 4 ), 341 – 362.en_US
dc.identifier.citedreferencePolissar, P. J., K. H. Freeman, D. B. Rowley, F. A. McInerney, and B. S. Currie ( 2009 ), Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers, Earth and Planet. Sci. Lett., 287 ( 1–2 ), 64 – 76, doi: 10.1016/j.epsl.2009.07.037.en_US
dc.identifier.citedreferencePowell, C. M. ( 1986 ), Continental underplating model for the rise of the Tibetan Plateau, Earth Planet. Sci. Lett., 81 ( 1 ), 79 – 94.en_US
dc.identifier.citedreferencePress, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling ( 1986 ), Numerical recipes, in The Art of Scientific Computing, pp. 186, Cambridge Univ. Press, Cambridge.en_US
dc.identifier.citedreferenceQBGMR (Qinhai Bureau of Geology and Mineral Resources) ( 1989a ), Geologic map of the Tuotuohe region, scale 1:200,000.en_US
dc.identifier.citedreferenceQBGMR (Qinhai Bureau of Geology and Mineral Resources) ( 1989b ), Geologic map of the Cuorendejia region, scale 1:200,000.en_US
dc.identifier.citedreferenceQuade, J., D. O. Breecker, M. Daeron, and J. Eiler ( 2011 ), The paleoaltimetry of Tibet: An isotopic perspective, Am. J. Sci., 311 ( 2 ), 77 – 115, doi: 10.2475/02.2011.01.en_US
dc.identifier.citedreferenceRivera, T. A., M. Storey, M. D. Schmitz, and J. L. Crowley ( 2013 ), Age intercalibration of 40 Ar/ 39 Ar sanidine and chemically distinct U/Pb zircon populations from the Alder Creek Rhyolite Quaternary geochronology standard, Chem. Geol., 345, 87 – 98.en_US
dc.identifier.citedreferenceRoger, F., P. Tapponnier, N. Arnaud, U. Scharer, M. Brunel, Z. Xu, and J. Yang ( 2000 ), An Eocene magmatic belt across central Tibet: Mantle subduction triggered by the Indian collision?, Terra Nova, 12 ( 3 ), 102 – 108.en_US
dc.identifier.citedreferenceRohrmann, A., P. Kapp, B. Carrapa, P. W. Reiners, J. Guynn, L. Ding, and M. Heizler ( 2012 ), Thermochronologic evidence for plateau formation in central Tibet by 45 Ma, Geology, 40 ( 2 ), 187 – 190, doi: 10.1130/G32530.1.en_US
dc.identifier.citedreferenceRoyden, L., and B. C. Burchfiel ( 1989 ), Are systematic variations in thrust belt style related to plate boundary processes? (the western Alps versus the Carpathians), Tectonics, 8 ( 1 ), 51 – 61.en_US
dc.identifier.citedreferenceSamson, S. D., and E. C. Alexander ( 1987 ), Calibration of the interlaboratory 40 Ar/ 39 Ar dating standard, MMhb‐1, Chem. Geol., 66, 27 – 34.en_US
dc.identifier.citedreferenceSchmitz, M. D., and B. Schoene ( 2007 ), Derivation of isotope ratios, errors and error correlations for U‐Pb geochronology using 205 Pb‐ 235 U‐( 233 U)‐spiked isotope dilution thermal ionization mass spectrometric data, Geochem. Geophys. Geosyst., 8, Q08006, doi: 10.1029/2006GC001492.en_US
dc.identifier.citedreferenceSchoene, B., J. Guex, A. Bartolini, U. Schaltegger, and T. J. Blackburn ( 2010 ), Correlating the end‐Triassic mass extinction and flood basalt volcanism at the 100 ka level, Geology, 38 ( 5 ), 387 – 390.en_US
dc.identifier.citedreferenceŞengör, A. M. C., and B. A. Natal'in ( 1996 ), Paleotectonics of Asia: Fragments of a synthesis, in The Tectonic Evolution of Asia, edited by A. Yin and T. M. Harrison, 486 – 640, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceSláma, J., et al. ( 2008 ), Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1 – 35.en_US
dc.identifier.citedreferenceSmith, A. B., and J. Xu ( 1988 ), Palaeontology of the 1985 Tibet Geotraverse, Lhasa to Golmud, Phil. Trans. R. Soc. A, 327 ( 1594 ), 53 – 105.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.