Show simple item record

No evidence for the localized heating of solar wind protons at intense velocity shear zones

dc.contributor.authorBorovsky, Joseph E.en_US
dc.contributor.authorSteinberg, John T.en_US
dc.date.accessioned2014-05-23T15:58:57Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationBorovsky, Joseph E.; Steinberg, John T. (2014). "No evidence for the localized heating of solar wind protons at intense velocity shear zones." Journal of Geophysical Research: Space Physics 119(3): 1455-1462.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106821
dc.description.abstractUsing measurements from the Wind spacecraft at 1 AU, the heating of protons in the solar wind at locations of intense velocity shear is examined. The 4321 sites of intense shear in fast coronal hole origin plasma are analyzed. The proton temperature, the proton specific entropy, and the proton number density at the locations of the shears are compared with the same quantities in the plasmas adjacent to the shears. A very slight but statistically significant enhancement of the proton temperature is seen at the sites of the shears, but it is accompanied by a larger enhancement of the proton number density at the sites of the shears. Consequently, there is no enhancement of the proton specific entropy at the shear sites, indicating no production of entropy; hence, no evidence for plasma heating is found at the sites of the velocity shears. Since the shearing velocities have appreciable Mach numbers, the authors suggest that there can be a slight adiabatic compression of the plasma at the shear zones. Key Points No proton heating is observed at the sites of intense velocity shear Temperature‐density signatures are consistent with adiabatic compressions The compressions could be associated with the large Mach numbers of the shearsen_US
dc.publisherPergamon Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSolar Wind Heatingen_US
dc.subject.otherVelocity Shearen_US
dc.subject.otherVorticityen_US
dc.titleNo evidence for the localized heating of solar wind protons at intense velocity shear zonesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106821/1/jgra50896.pdf
dc.identifier.doi10.1002/2013JA019746en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePariat, E., S. K. Antiochos, and C. R. DeVore ( 2009 ), A model for solar polar jets, Astrophys. J., 691, 61.en_US
dc.identifier.citedreferenceOwens, M. J., R. T. Wicks, and T. S. Horbury ( 2011 ), Magnetic discontinuities in the near‐Earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?, Solar Phys., 269, 411.en_US
dc.identifier.citedreferenceParhi, S., S. T. Suess, and M. Sulkanen ( 1999 ), Can Kelvin‐Helmholtz instabilities of jet‐like structures and plumes cause solar wind fluctuations at 1 AU?, J. Geophys. Res., 104, 14,781 – 14,787.en_US
dc.identifier.citedreferenceParker, E. N. ( 1969 ), Theoretical studies of the solar wind phenomenon, Space Sci. Rev., 9, 325.en_US
dc.identifier.citedreferenceRoberts, D. A., M. L. Goldstein, W. H. Matthaeus, and S. Ghosh ( 1992 ), Velocity shear generation of solar wind turbulence, J. Geophys. Res., 97, 17,115 – 17,130.en_US
dc.identifier.citedreferenceRosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink ( 1977 ), A survey on initial results of the Helios plasma experiment, J. Geophys. Res., 42, 561 – 580.en_US
dc.identifier.citedreferenceRuderman, M. S., M. L. Goldstein, D. A. Roberts, A. Deane, and L. Ofman ( 1999 ), Alfven wave phase mixing driving by velocity shear in two dimensions, AIP Conf. Proc., 471, 337.en_US
dc.identifier.citedreferenceSafranknova, J., Z. Nemecek, P. Cagas, L. Prech, J. Pavlu, G. N. Zastenker, M. O. Riazantseva, and I. V. Koloskova ( 2013 ), Short scale variations of the solar wind helium abundance, Astrophys. J., 778, 25.en_US
dc.identifier.citedreferenceSchindler, K., and J. Birn ( 1978 ), Magnetospheric Physics, Phys. Rep., 47, 109.en_US
dc.identifier.citedreferenceSchwartz, S. J., and E. Marsch ( 1983 ), The radial evolution of a single solar wind plasma parcel, J. Geophys. Res., 88, 9919.en_US
dc.identifier.citedreferenceShibata, K., et al. ( 2007 ), Chromospheric anemone jets as evidence of ubiquitous reconnection, Science, 318, 1591.en_US
dc.identifier.citedreferenceTsurutani, B. T., and C. M. Ho ( 1999 ), A review of discontinuities and Alfven waves in interplanetary space: ULYSSES results, Rev. Geophys., 37, 517.en_US
dc.identifier.citedreferenceVasquez, B. J., and J. V. Hollweg ( 1999 ), Formation of pressure‐balanced structures and fast waves from nonlinear Alfven waves, J. Geophys. Res., 104, 4681 – 4696.en_US
dc.identifier.citedreferenceWang, X., C. Tu, J. He, E. Marsch, and L. Wang ( 2013 ), On intermittent turbulence heating of the solar wind: Differences between tangential and rotational discontinuities, Astrophys. J. Lett., 772, L14.en_US
dc.identifier.citedreferenceWhang, Y. C., K. W. Behannon, L. F. Burlaga, and S. Zhang ( 1989 ), Thermodynamic properties of the heliospheric plasma, J. Geophys. Res., 94, 2345 – 2364.en_US
dc.identifier.citedreferenceYamauchi, Y., S. T. Suess, and T. Sakurai ( 2003 ), Relation between polar plums and fine structure in the solar wind from Ulysses high‐latitude observations, AIP Conf. Proc., 679, 255.en_US
dc.identifier.citedreferenceYang, G., and J. V. Hollweg ( 1991 ), The effects of velocity shear on the resonance absorption of MHD surface waves: Cold plasma, J. Geophys. Res., 96, 13,807 – 13,813.en_US
dc.identifier.citedreferenceZastenker, G. N., et al. ( 2013 ), Fast measurements of parameters of the solar wind using the MBSW instrument, Cosmic Res., 51, 78.en_US
dc.identifier.citedreferenceZhdankin, V., S. Boldyrev, J. Mason, and J. C. Perez ( 2012 ), Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind, Phys. Rev. Lett., 108, 175004.en_US
dc.identifier.citedreferenceArnold, L., G. Li, X. Li, and Y. Yan ( 2013 ), Observation of flux‐tube crossings in the solar wind, Astrophys. J., 766, 2.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The flux‐tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 ), The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind‐shear events and CCMC simulations of magnetotail disconnections, J. Geophys. Res., 117, A06224, doi: 10.1029/2012JA017623.en_US
dc.identifier.citedreferenceBorovsky, J. E., and T. E. Cayton ( 2011 ), Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit, J. Geophys. Res., 116, A06216, doi: 10.1029/2011JA016470.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010 ), Solar‐wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, J. Geophys. Res., 115, A10101, doi: 10.1029/2009JA014966.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2011 ), No evidence for the heating of the solar wind at strong current sheets, Astrophys. J. Lett., 739, L61, doi: 10.1088/2041‐8205/739/2/L61.en_US
dc.identifier.citedreferenceBorovsky, J. E., and S. P. Gary ( 2009 ), On viscosity and the Reynolds number of MHD turbulence in collisionless plasmas: Coulomb collisions, Landau damping, and Bohm diffusion, Phys. Plasmas, 16, 082307, doi: 10.1063/1.3155134.en_US
dc.identifier.citedreferenceBorovsky, J. E., and S. P. Gary ( 2011 ), Electron‐ion Coulomb scattering and the electron Landau damping of Alfven waves in the solar wind, J. Geophys. Res., 116, A07101, doi: 10.1029/2010JA016403.en_US
dc.identifier.citedreferenceBruno, R., and V. Carbone ( 2013 ), The solar wind as a turbulence laboratory, Living Rev. Solar Phys., 10, 2, http://www.livingreview.org/lrsp‐2013‐2.en_US
dc.identifier.citedreferenceBruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano ( 2001 ), Identifying intermittency events in the solar wind, Planet. Space Sci., 49, 1201.en_US
dc.identifier.citedreferenceBuffington, A., M. M. Bisi, J. M. Clover, P. P. Hick, B. V. Jackson, and T. A. Kuchar ( 2008 ), Analysis of plasma‐tail motions for Comets C/2001 Q4 (NEAT) and C/200 T7 (LINEAR) using observations from SMEI, Astrophys. J., 677, 798.en_US
dc.identifier.citedreferenceBurlaga, L. F. ( 1968 ), Micro‐scale structures in the interplanetary medium, Solar Phys., 4, 67.en_US
dc.identifier.citedreferenceColeman, P. J. ( 1968 ), Turbulence, viscosity, and dissipation in the solar‐wind plasma, Astrophys. J., 153, 371.en_US
dc.identifier.citedreferenceDe Keyser, J., M. Roth, and A. Soding ( 1998 ), Flow shear across solar wind discontinuities: WIND observations, Geophys. Res. Lett., 25, 2649 – 2652.en_US
dc.identifier.citedreferenceDenskat, K. U., and L. F. Burlaga ( 1977 ), Multispacecraft observations of microscale fluctuations in the solar wind, J. Geophys. Res., 82, 2693 – 2704.en_US
dc.identifier.citedreferenceEyni, M., and R. Steinitz ( 1981 ), Global properties of the solar wind. II. Empirical proton temperature gradients and their dependence on flow velocity, Astrophys. J., 243, 279.en_US
dc.identifier.citedreferenceFeldman, W. C., J. T. Gosling, D. J. McComas, and J. L. Phillips ( 1993 ), Evidence for ion jets in the high‐speed solar wind, J. Geophys. Res., 98, 5593 – 5605.en_US
dc.identifier.citedreferenceFreeman, J. W. ( 1988 ), Estimates of solar wind heating inside 0.3 AU, Geophys. Res. Lett., 15, 88 – 91.en_US
dc.identifier.citedreferenceFreeman, J. W., and R. E. Lopez ( 1985 ), The cold solar wind, J. Geophys. Res., 90, 9885 – 9887.en_US
dc.identifier.citedreferenceGhosh, S., W. H. Matthaeus, D. A. Roberts, and M. L. Goldstein ( 1998 ), The evolution of slab fluctuations in the presence of pressure‐balanced magnetic structures and velocity shears, J. Geophys. Res., 103, 23,691 – 23,704.en_US
dc.identifier.citedreferenceGoertz, C. K., and W. Baumjohann ( 1991 ), On the thermodynamics of the plasma sheet, J. Geophys. Res., 96, 20,991 – 20,998.en_US
dc.identifier.citedreferenceGoldstein, B. E., M. Neugebauer, J. L. Phillips, S. Bame, J. T. Gosling, D. McComas, Y.‐M. Wang, N. R. Sheeley, and S. T. Suess ( 1996 ), Ulysses plasma parameters: latitudinal, radial, and temporal variations, Astron. Astrophys., 316, 296.en_US
dc.identifier.citedreferenceGosling, J. T., H. Tian, and T. D. Phan ( 2011 ), Pulsed Alfven waves in the solar wind, Astrophys. J. Lett., 737, L35.en_US
dc.identifier.citedreferenceGreco, A., W. H. Matthaeus, S. Servidio, P. Chuychai, and P. Dmitruk ( 2009 ), Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence, Astrophys. J., 691, L111.en_US
dc.identifier.citedreferenceHellinger, P., L. Matteini, S. Stverak, P. M. Travnicek, and E. Marsch ( 2011 ), Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited, J. Geophys. Res., 116, A09105, doi: 10.1029/2011JA016674.en_US
dc.identifier.citedreferenceHollweg, J. V., G. Yang, V. M. Cadez, and B. Gakovic ( 1990 ), Surface waves in an incompressible fluid: Resonant instability due to velocity shear, Astrophys. J., 349, 335.en_US
dc.identifier.citedreferenceHorbury, T. S., D. Burgess, M. Franz, and C. J. Owen ( 2001 ), Three spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 28, 677 – 680.en_US
dc.identifier.citedreferenceJackson, B. V., A. Buffington, J. M. Clover, P. P. Hick, H.‐S. Yu, and M. M. Bisi ( 2013 ), Using comet plasma tails to study solar wind, AIP Conf. Proc., 1539, 364.en_US
dc.identifier.citedreferenceKaghashvili, E. K. ( 1999 ), Linear mechanism of Alfven wave dissipation induced by velocity shear: Phase mixing and damping, AIP Conf. Proc., 471, 345.en_US
dc.identifier.citedreferenceKnetter, T., F. M. Neubauer, T. Horbury, and A. Balogh ( 2004 ), Four‐point discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi: 10.1029/2003JA010099.en_US
dc.identifier.citedreferenceKorzhov, N. P., V. V. Mishin, and V. M. Tomozov ( 1985 ), On the viscous interaction of solar wind streams, Sov. Astron., 29, 215.en_US
dc.identifier.citedreferenceLin, R. P., et al. ( 1995 ), A three‐dimensional plasma and energetic particle investigation for the WIND spacecraft, Space Sci. Rev., 71, 125.en_US
dc.identifier.citedreferenceLiu, S., E. Marsch, S. Livi, J. Woch, B. Wilken, R. von Steiger, and G. Gloeckler ( 1995 ), Radial gradients of ions densities and temperatures derived from SWICS/Ulysses observations, Geophys. Res. Lett., 22, 2445 – 2448.en_US
dc.identifier.citedreferenceMalaspina, D. M., and J. T. Gosling ( 2012 ), Two spacecraft observations of magnetic discontinuities in the solar wind with STEREO, J. Geophys. Res., 117, A04109, doi: 10.1029/2011JA017375.en_US
dc.identifier.citedreferenceMann, G., E. Marsch, and B. Roberts ( 1992 ), Surface and body waves in solar‐wind flow tubes, in Solar Wind Seven, edited by E. Marsch and R. Schwenn, pp. 495, Pergamon Press, Oxford, U. K.en_US
dc.identifier.citedreferenceMarkovskii, S. A., B. J. Vasquez, C. W. Smith, and J. V. Hollweg ( 2006 ), Dissipation of the perpendicular turbulent cascade in the solar wind, Astrophys. J., 639, 1177.en_US
dc.identifier.citedreferenceMarsch, E., K. H. Muhlhauser, H. Rosenbauer, and R. Schwenn ( 1983 ), On the equation of state of solar wind ions derived from Helios measurements, J. Geophys. Res., 88, 2982 – 2992.en_US
dc.identifier.citedreferenceMigliuolo, S. ( 1984 ), Velocity shear instabilities in the anisotropic solar wind and the heating of ions perpendicular to the magnetic field, J. Geophys. Res., 89, 27 – 36.en_US
dc.identifier.citedreferenceNeugebauer, M. ( 1985 ), Alignment of velocity and field changes across tangential discontinuities in the solar wind, J. Geophys. Res., 90, 6627 – 6630.en_US
dc.identifier.citedreferenceNeugebauer, M. ( 2012 ), Evidence for polar X‐ray jets as sources of microstream peaks in the solar wind, Astrophys. J., 750, 50.en_US
dc.identifier.citedreferenceNeugebauer, M., and J. Giacalone ( 2010 ), Progress in the study of interplanetary discontinuities, AIP Conf. Proc., 1216, 194.en_US
dc.identifier.citedreferenceNeugebauer, M., D. R. Clay, B. E. Goldstein, B. T. Tsurutani, and R. D. Zwickl ( 1984 ), A reexamination of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 89, 5395 – 5408.en_US
dc.identifier.citedreferenceNeugebauer, M., C. J. Alexander, R. Schwenn, and A. K. Richter ( 1986 ), Tangential discontinuities in the solar wind: Correlated field and velocity changes and the Kelvin‐Helmholz instability, J. Geophys. Res., 91, 13,694 – 13,698.en_US
dc.identifier.citedreferenceOsman, K. T., W. H. Matthaeus, M. Wan, and A. F. Rappazzo ( 2012 ), Intermittency and local heating in the solar wind, Phys. Rev. Lett., 108, 261102.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.