Show simple item record

Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.contributor.authorMcNutt, Ralph L.en_US
dc.date.accessioned2014-05-23T15:58:58Z
dc.date.available2015-06-01T15:48:45Zen_US
dc.date.issued2014-04en_US
dc.identifier.citationKorth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L. (2014). "Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations." Journal of Geophysical Research: Space Physics 119(4): 2917-2932.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106823
dc.description.abstractWe assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer‐derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low‐latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north‐south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field. Key Points Agreement of Mercury plasma pressure from plasma and field observations Pressure enhancements observed near the planet and at the magnetopause flanks The pressure distributions show dawn‐dusk and north‐south asymmetriesen_US
dc.publisherImperial College Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPlasma Entryen_US
dc.subject.otherMagnetosphereen_US
dc.subject.otherPlasma Pressureen_US
dc.subject.otherMESSENGERen_US
dc.subject.otherMercuryen_US
dc.subject.otherPlasma Distributionen_US
dc.titlePlasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106823/1/jgra50930.pdf
dc.identifier.doi10.1002/2013JA019567en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRussell, C. T., D. N. Baker, and J. A. Slavin ( 1988 ), The magnetosphere of Mercury, in Mercury, edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp. 514 – 561, University of Arizona Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceLennartsson, W., and E. G. Shelley ( 1986 ), Survey of 0.1‐keV/e to 16‐keV/e plasma sheet ion composition, J. Geophys. Res., 91, 3061 – 3076, doi: 10.1029/Ja091ia03p03061.en_US
dc.identifier.citedreferenceNagano, H. ( 1979 ), Effect of finite ion Larmor radius on the Kelvin‐Helmholtz instability of the magnetopause, Planet. Space Sci., 27, 881 – 884.en_US
dc.identifier.citedreferenceNakamura, T. K. M., H. Hasegawa, and I. Shinohara ( 2010 ), Kinetic effects on the Kelvin‐Helmholtz instability in ion‐to‐magnetohydrodynamic scale transverse velocity shear layers: Particle simulations, Phys. Plasmas, 17, 042119, doi: 10.1063/1.3385445.en_US
dc.identifier.citedreferenceNess, N. F. ( 1979 ), The magnetosphere of Mercury, in Solar System Plasma Physics, vol. II, edited by C. F. Kennel, L. J. Lanzerotti, and E. N. Parker, pp. 185 – 206, North‐Holland Company, Amsterdam, Netherlands.en_US
dc.identifier.citedreferenceOtto, A., and D. H. Fairfield ( 2000 ), Kelvin‐Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations, J. Geophys. Res., 105, 21,175 – 21,190, doi: 10.1029/1999ja000312.en_US
dc.identifier.citedreferenceParal, J., and R. Rankin ( 2013 ), Dawn‐dusk asymmetry in the Kelvin‐Helmholtz instability at Mercury, Nature Commun., 4, 1645, doi: 10.1038/Ncomms2676.en_US
dc.identifier.citedreferenceParker, E. N. ( 1957 ), Sweet's mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., 62, 509 – 520, doi: 10.1029/JZ062i004p00509.en_US
dc.identifier.citedreferencePetschek, H. E. ( 1964 ), Magnetic field annihilation, in Physics of Solar Flares, Spec. Pub. 50, edited by W. N. Ness, pp. 425 – 439, National Aeronautics and Space Administration, Washington, D. C.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res. Space Physics, 118, 1604 – 1619, doi: 10.1029/2012ja018073.en_US
dc.identifier.citedreferenceRoederer, J. G. ( 1970 ), Dynamics of Geomagnetically Trapped Radiation, Springer, New York.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2007 ), MESSENGER: Exploring Mercury's magnetosphere, Space Sci. Rev., 131, 133 – 160.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010a ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010b ), MESSENGER observations of large flux transfer events at Mercury, Geophys. Res. Lett., 37, L02105, doi: 10.1029/2009gl041485.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012ja017926.en_US
dc.identifier.citedreferenceSolomon, S. C., et al. ( 2001 ), The MESSENGER mission to Mercury: Scientific objectives and implementation, Planet. Space Sci., 49, 1445 – 1465.en_US
dc.identifier.citedreferenceSpence, H. E., M. G. Kivelson, R. J. Walker, and D. J. McComas ( 1989 ), Magnetospheric plasma pressures in the midnight meridian—Observations from 2.5 to 35 R E, J. Geophys. Res., 94, 5264 – 5272, doi: 10.1029/Ja094ia05p05264.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, L. G. Blomberg, and H. Korth ( 2010 ), The Kelvin‐Helmholtz instability at Mercury: An assessment, Planet. Space Sci., 58, 1434 – 1441, doi: 10.1016/j.pss.2010.06.008.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, L. G. Blomberg, J. A. Cumnock, S. C. Solomon, B. J. Anderson, and H. Korth ( 2011 ), Reconstruction of propagating Kelvin‐Helmholtz vortices at Mercury's magnetopause, Planet. Space Sci., 59, 2051 – 2057, doi: 10.1016/j.pss.2011.05.008.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012 ), MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011ja017268.en_US
dc.identifier.citedreferenceTerasawa, T., et al. ( 1997 ), Solar wind control of density and temperature in the near‐Earth plasma sheet: WIND/GEOTAIL collaboration, Geophys. Res. Lett., 24, 935 – 938, doi: 10.1029/96gl04018.en_US
dc.identifier.citedreferenceTrávníček, P. M., P. Hellinger, and D. Schriver ( 2007 ), Structure of Mercury's magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations, Geophys. Res. Lett., 34, L05104, doi: 10.1029/2006GL028518.en_US
dc.identifier.citedreferenceTrávníček, P. M., D. Schriver, P. Hellinger, D. Herčík, B. J. Anderson, M. Sarantos, and J. A. Slavin ( 2010 ), Mercury's magnetosphere‐solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results, Icarus, 209, 11 – 22, doi: 10.1016/j.icarus.2010.01.008.en_US
dc.identifier.citedreferenceWing, S., and P. T. Newell ( 1998 ), Central plasma sheet ion properties as inferred from ionospheric observations, J. Geophys. Res., 103, 6785 – 6800.en_US
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophy. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 – 1865, doi: 10.1126/science.1211302.en_US
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 – 39, doi: 10.1016/j.icarus.2010.01.024.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt Jr. ( 2012 ), Low‐degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00l12, doi: 10.1029/2012je004159.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214‐007‐9272‐5.en_US
dc.identifier.citedreferenceAxford, W. I. ( 1964 ), Viscous interaction between the solar wind and the Earth's magnetosphere, Planet. Space Sci., 12, 45 – 54, doi: 10.1016/0032‐0633(64)90067‐4.en_US
dc.identifier.citedreferenceBaumjohann, W., and R. A. Treumann ( 1997 ), Basic Space Plasma Physics, 329 pp., Imperial College Press, London.en_US
dc.identifier.citedreferenceBaumjohann, W., G. Paschmann, and C. A. Cattell ( 1989 ), Average plasma properties in the central plasma sheet, J. Geophys. Res., 94, 6597 – 6606, doi: 10.1029/Ja094ia06p06597.en_US
dc.identifier.citedreferenceBoardsen, S. A., B. J. Anderson, M. H. Acuña, J. A. Slavin, H. Korth, and S. C. Solomon ( 2009 ), Narrow‐band ultra‐low‐frequency wave observations by MESSENGER during its January 2008 flyby through Mercury's magnetosphere, Geophys. Res. Lett., 36, L01104, doi: 10.1029/2008GL036034.en_US
dc.identifier.citedreferenceBoardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg ( 2010 ), Observations of Kelvin‐Helmholtz waves along the dusk‐side boundary of Mercury's magnetosphere during MESSENGER's third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010gl043606.en_US
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent ~1 Hz waves in Mercury's inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012ja017822.en_US
dc.identifier.citedreferenceBüchner, J., and L. M. Zelenyi ( 1989 ), Regular and chaotic charged‐particle motion in magnetotail‐like field reversals, 1. Basic theory of trapped motion, J. Geophys. Res., 94, 11,821 – 811,842.en_US
dc.identifier.citedreferenceDelcourt, D. C., S. Grimald, F. Leblanc, J. J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T. E. Moore ( 2003 ), A quantitative model of the planetary Na + contribution to Mercury's magnetosphere, Ann. Geophys., 21, 1723 – 1736.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt, and S. C. Solomon, ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1029/2012JA017959.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and auroral zones, Phys. Rev. Lett., 6, 47 – 48.en_US
dc.identifier.citedreferenceEastman, T. E., L. A. Frank, and C. Y. Huang ( 1985 ), The boundary‐layers as the primary transport regions of the Earth's magnetotail, J. Geophys. Res., 90, 9541 – 9560, doi: 10.1029/Ja090ia10p09541.en_US
dc.identifier.citedreferenceFairfield, D. H., A. Otto, T. Mukai, S. Kokubun, R. P. Lepping, J. T. Steinberg, A. J. Lazarus, and T. Yamamoto ( 2000 ), Geotail observations of the Kelvin‐Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105, 21,159 – 21,173, doi: 10.1029/1999ja000316.en_US
dc.identifier.citedreferenceFeldman, W. C., J. R. Asbridge, S. J. Bame, and J. T. Gosling ( 1978 ), Long‐term variations of selected solar‐wind properties—IMP 6, 7, and 8 results, J. Geophys. Res., 83, 2177 – 2189, doi: 10.1029/Ja083ia05p02177.en_US
dc.identifier.citedreferenceFuselier, S. A., E. G. Shelley, and O. W. Lennartsson ( 1997 ), Solar wind composition changes across the Earth's magnetopause, J. Geophys. Res., 102, 275 – 283, doi: 10.1029/96ja02355.en_US
dc.identifier.citedreferenceFuselier, S. A., R. C. Elphic, and J. T. Gosling ( 1999 ), Composition measurements in the dusk flank magnetosphere, J. Geophys. Res., 104, 4515 – 4522, doi: 10.1029/1998ja900137.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pile‐up and plasma depletion in Mercury's subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7299, doi: 10.1002/2013JA019244.en_US
dc.identifier.citedreferenceGlassmeier, K. H., and J. Espley ( 2006 ), ULF waves in planetary magnetospheres, in Magnetospheric ULF Waves: Synthesis and New Directions, edited by K. Takahashi et al., pp. 341 – 359, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceGoertz, C. K., and W. Baumjohann ( 1991 ), On the thermodynamics of the plasma sheet, J. Geophys. Res., 96, 20,991 – 20,998, doi: 10.1029/91ja02128.en_US
dc.identifier.citedreferenceHerčík, D., P. M. Trávníček, J. R. Johnson, E. H. Kim, and P. Hellinger ( 2013 ), Mirror mode structures in the asymmetric Hermean magnetosheath: Hybrid simulations, J. Geophys. Res. Space Physics, 118, 405 – 417, doi: 10.1029/2012ja018083.en_US
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?, Abstract P12B‐07, presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9–13 Dec.en_US
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., 117, E00l14, doi: 10.1029/2012je004217.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. ( 2011 ), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt ( 2012 ), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., 117, A00M07, doi: 10.1029/2012ja018052.en_US
dc.identifier.citedreferenceLennartsson, W. ( 1992 ), A scenario for solar‐wind penetration of Earth's magnetic tail based on ion composition data from the ISEE‐1 spacecraft, J. Geophys. Res., 97, 19,221 – 19,238, doi: 10.1029/92ja01604.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.