Show simple item record

The esophageal mucosa and submucosa: immunohistology in GERD and Barrett's esophagus

dc.contributor.authorAppelman, Henry D.en_US
dc.contributor.authorStreutker, Catherineen_US
dc.contributor.authorVieth, Michaelen_US
dc.contributor.authorNeumann, Helmuten_US
dc.contributor.authorNeurath, Markus F.en_US
dc.contributor.authorUpton, Melissa P.en_US
dc.contributor.authorSagaert, Xavieren_US
dc.contributor.authorWang, Helen H.en_US
dc.contributor.authorEl‐zimaity, Halaen_US
dc.contributor.authorAbraham, Susan C.en_US
dc.contributor.authorBellizzi, Andrew M.en_US
dc.date.accessioned2014-05-23T15:59:05Z
dc.date.available2014-12-01T17:22:26Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationAppelman, Henry D.; Streutker, Catherine; Vieth, Michael; Neumann, Helmut; Neurath, Markus F.; Upton, Melissa P.; Sagaert, Xavier; Wang, Helen H.; El‐zimaity, Hala ; Abraham, Susan C.; Bellizzi, Andrew M. (2013). "The esophageal mucosa and submucosa: immunohistology in GERD and Barrett's esophagus." Annals of the New York Academy of Sciences 1300(1): 144-165.en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106843
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMarkersen_US
dc.subject.otherTranscription Factorsen_US
dc.subject.otherEosinophilic Esophagitisen_US
dc.subject.otherMultilayered Epitheliumen_US
dc.subject.otherLamina Propriaen_US
dc.subject.otherDilated Intercellular Spacesen_US
dc.subject.otherMuscularis Mucosaeen_US
dc.titleThe esophageal mucosa and submucosa: immunohistology in GERD and Barrett's esophagusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106843/1/nyas12241.pdf
dc.identifier.doi10.1111/nyas.12241en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceScheil‐Bertram, S., D. Lorenz, C. Ell, et al. 2008. Expression of α‐methylacyl coenzyme A racemose in the dysplasia carcinoma sequence associated with Barrett's esophagus. Mod. Pathol. 21: 961 – 967.en_US
dc.identifier.citedreferenceDorer, R. & R.D. Odze. 2006. AMACR immunostaining is useful in detecting dysplastic epithelium in Barrett's esophagus, ulcerative colitis, and Crohn's disease. Am. J. Surg. Pathol. 30: 871 – 877.en_US
dc.identifier.citedreferenceLisovsky, M., O. Falkowski & T. Bhuiya. 2006. Expression of alpha‐methyl‐coenzyme A racemose in dysplastic Barrett's epithelium. Hum. Pathol. 37: 1601 – 1606.en_US
dc.identifier.citedreferenceSkacel, M., R.E. Petras, L.A. Rybicki, et al. 2002. p53 expression in low grade dysplasia in Barrett's esophagus: correlation with interobserver agreement and disease progression. Am. J. Gastroenterol. 97: 2508 – 2513.en_US
dc.identifier.citedreferenceKaye, P.V., S.A. Haider, M. Ilyas, et al. 2009. Barrett's dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology 54: 699 – 712.en_US
dc.identifier.citedreferenceSarbia, M., J. Arjumand, M. Wolter, et al. 2001. Frequent c‐myc amplification in high‐grade dysplasia and adenocarcinoma in Barrett esophagus. Am. J. Clin. Pathol. 115: 835 – 840.en_US
dc.identifier.citedreferenceChinyama, C.N., R.E.K. Marshall, W.J. Owen, et al. 1999. Expression on MUC1 and MUC2 mucin gene products in Barrett's metaplasia, dysplasia and adenocarcinoma: an immunopathological study with clinical correlation. Histopathol ogy 35: 517 – 524.en_US
dc.identifier.citedreferenceWang, J.S., M. Guo, E.A. Montgomery, et al. 2009. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. Am. J. Gastroenterol. 104: 2153 – 2160.en_US
dc.identifier.citedreferenceFlejou, J.‐F. 2005. Barrett's oesophagus: from metaplasia to dysplasia and cancer. Gut 54 ( Suppl I ): i6 – i12.en_US
dc.identifier.citedreferenceYounes, M., R.M. Lebovitz, L.V. Lechago, et al. 1993. p53 protein accumulation in Barrett's metaplasia, dysplasia, and carcinoma: a follow‐up study. Gastroenterology 105: 1637 – 1642.en_US
dc.identifier.citedreferencevan Dekken, H., W.C. Hop, H.W. Tilanus, et al. 2008. Immunohistochemical evaluation of a panel of tumor cell markers during malignant progression in Barrett esophagus. Am. J. Clin. Pathol. 130: 745 – 753.en_US
dc.identifier.citedreferenceSonwalkar, S.A., O. Rotimi, N. Scott, et al. 2010. A study of indefinite for dysplasia in Barrett's oesophagus: reproducibility of diagnosis, clinical outcomes and predicting progression with AMACR (alpha‐methylacyl‐CoA‐racemase). Histopathology 56: 900 – 907.en_US
dc.identifier.citedreferenceRoesly, H.B., M.R. Khan, H.D. Chen, et al. 2012. The decreased expression of Beclin‐1 correlates with progression to esophageal adenocarcinoma: the role of deoxycholic acid. Am. J. Physiol. Gastrointest. Liver Physiol. 302: G864 – G872.en_US
dc.identifier.citedreferenceChawengsaksophak, K., R. James, V.E. Hammond, et al. 1997. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386: 84 – 87.en_US
dc.identifier.citedreferenceGao, N., P. White & K.H. Kaestner. 2009. Establishment of intestinal identity and epithelial‐mesenchymal signaling by Cdx2. Development. Cell 16: 588 – 599.en_US
dc.identifier.citedreferenceMutoh, H., Y. Hakamata, K. Sato, et al. 2002. Conversion of gastric mucosa to intestinal metaplasia in Cdx2‐expressing transgenic mice. Biochem. Biophys. Res. Commun. 294: 470 – 479.en_US
dc.identifier.citedreferencePhillips, R.W., H.F. Frierson, Jr., C.A. Moskaluk. 2003. Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am. J. Surg. Pathol. 27: 1442 – 1447.en_US
dc.identifier.citedreferenceEda, A., H. Osawa, K. Satoh, et al. 2003. Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa. J. Gastroenterol. 38: 14 – 22.en_US
dc.identifier.citedreferenceMoons, L.M., D.A. Bax, E.J. Kuipers, et al. 2004. The homeodomain protein CDX2 is an early marker of Barrett's oesophagus. J. Clin. Pathol. 57: 1063 – 1068.en_US
dc.identifier.citedreferenceKazumori, H., S. Ishihara, M.A. Rumi, et al. 2006. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett's epithelium. Gut 55: 16 – 25.en_US
dc.identifier.citedreferenceWong, N.A., J. Wilding, S. Bartlett, et al. 2005. CDX1 is an important molecular mediator of Barrett's metaplasia. Proc. Natl. Acad. Sci. USA 102: 7565 – 7570.en_US
dc.identifier.citedreferenceKong, J., M.A. Crissey, S. Funakoshi, et al. 2011. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS One. 6: e18280.en_US
dc.identifier.citedreferencedi Pietro, M., P. Lao‐Sirieix, S. Boyle, et al. 2012. Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus. Proc. Natl. Acad. Sci. USA 109: 9077 – 9082.en_US
dc.identifier.citedreferenceChidgey, M.A. 1997. Desmosomes and disease. Histol. Histopathol. 12: 1159 – 1168.en_US
dc.identifier.citedreferenceWex, T., K. Mönkemüller, A. Stahr, et al. 2012. Gastro‐oesophageal reflux disease is associated with up‐regulation of desmosomal components in oesophageal mucosa. Histopathology. 60: 405 – 415.en_US
dc.identifier.citedreferenceWex, T., D. Kuester, K. Mönkemüller, et al. 2012. Assessment of desmosomal components (desmoglein 1–3, plakoglobin) in cardia mucosa in relation to gastroesophageal reflux disease and Helicobacter pylori infection. Hum. Pathol. 43: 1745 – 1754.en_US
dc.identifier.citedreferenceKilpatrick, D.C. 2002. Animal lectins: a historical introduction and overview. Biochim. Biophys. Acta. 1572: 187 – 197.en_US
dc.identifier.citedreferencePoorkhalkali, N., I. Jacobson & H.F. Helander. 1999. Lectin histochemistry of the esophagus in several mammalian species. Anat. Embryol. (Berl.). 200: 541 – 549.en_US
dc.identifier.citedreferenceNeumann, H., T. Wex, M. Vieth, et al. 2007. Gastroesophageal reflux disease leads to major alterations in lectin‐binding in the columnar epithelium of the gastroesophageal junction. Scand. J. Gastroenterol. 42: 791 – 798.en_US
dc.identifier.citedreferenceNeumann, H., T. Wex, K. Mönkemüller, et al. 2008. Lectin UEA‐I‐binding proteins are specifically increased in the squamous epithelium of patients with Barrett's esophagus. Digestion 78: 201 – 207.en_US
dc.identifier.citedreferenceBird‐Lieberman, E.L., A.A. Neves, P. Lao‐Sirieix, et al. 2012. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Med. 18: 315 – 321.en_US
dc.identifier.citedreferenceTakubo, K. 2007. Pathology of the Esophagus. 2nd ed. Tokyo: Springer.en_US
dc.identifier.citedreferenceDeNardi, F.G. & R.H. Riddell. 2007. “Esophagus,” Chapter 22 In Histology for Pathologists. 3rd ed., S.E. Mills, Ed. Philadelphia: Lippincott Williams & Wilkins.en_US
dc.identifier.citedreferenceFenoglio‐Preiser, F. et al. 2008. “ The nonneplastic esophagus.” In Gastrointestinal Pathology: An Atlas and Text. 3rd ed. Philadelphia: Lippincott Williams & Wilkins.en_US
dc.identifier.citedreferenceStevens, C.E. & I.D. Hume. 2004. Comparative Physiology of the Vertebrate Digestive System. Cambridge, UK: Cambridge University Press.en_US
dc.identifier.citedreferenceVieth, M., R. Fiocca, J. Haringsma, et al. 2004. Radial distribution of dilated intercellular spaces of the esophageal squamous epithelium in patients with reflux disease exhibiting discrete endoscopic lesions. Dig. Dis. 22: 206 – 212.en_US
dc.identifier.citedreferenceOrlando, L.A. & R.C. Orlando. 2009. Dilated intercellular speces as a marker of GERD. Curr. Gastroenterol. Rep. 11: 190 – 194.en_US
dc.identifier.citedreferenceFarré, R., F. Fornari, K. Blondeau, et al. 2010. Acid and weakly acidic solutions impair mucosal integrity of distal esposed and proximal non‐exposed human oesophagus. Gut 59: 164 – 169.en_US
dc.identifier.citedreferenceVan Malenstein, H., F. Ricard & D. Sifrim. 2008. Esophageal dilated intercellular spaces (DIS) and nonerosive reflux disease. Am. J. Gastroenterol. 103: 1021 – 1028.en_US
dc.identifier.citedreferenceKato, H., T. Iizuka & H. Watanabe. 1981. Double adenocarcinoma in Barrett's Esophagus. Jpn. J. Clin. Oncol. 11: 523 – 530.en_US
dc.identifier.citedreferenceRubio, C.A. & R. Riddell. 1988. Musculo‐fibrous anomaly in Barrett's mucosa with dysplasia. Am. J. Surg. Pathol. 12: 885 – 889.en_US
dc.identifier.citedreferenceTakubo, K., K. Sasajima, K. Yamashita, et al. 1991. Double muscularis mucosae in Barrett's esophagus. Hum. Pathol. 22: 1158 – 1161.en_US
dc.identifier.citedreferenceNishimaki, T., A.H. Holscher, M. Schuler, et al. 1994. Chronic esophagitis and subsequent morphological changes of the esophageal mucosa in Barrett's esophagus: a histological study of esophagectomy specimens. Surg. Today 24: 203 – 209.en_US
dc.identifier.citedreferenceBarbour, A.P., M. Jones, I. Brown, et al. 2010. Risk stratification for early esophageal adenocarcinoma: analysis of lymphatic spread and prognostic factors. Ann. Surg. Oncol. 17: 2494 – 2502.en_US
dc.identifier.citedreferenceAbraham, S.C., A.M. Kraskinas, A.M. Correa, et al. 2007. Duplication of the muscularis mucosae in Barrett esophagus: an underrecognized feature and its implication for staging of adenocarcinoma. Am. J. Surg. Pathol. 31: 1719 – 1725.en_US
dc.identifier.citedreferenceKaneshiro, D.K., J.C. Post, L. Rybicki, et al. 2011. Clinical significance of the duplicated muscularis mucosae in Barrett esophagus‐related superficial adenocarcinoma. Am. J. Surg. Pathol. 35: 697 – 700.en_US
dc.identifier.citedreferenceEstrella, J.S., W.L. Hofstetter, A.M. Correa, et al. 2011. Duplicated muscularis mucosae invasion has similar risk of lymph node metastasis and recurrence‐free survival as intramucosal esophageal adenocarcinoma. Am. J. Surg. Pathol. 35: 1045 – 1053.en_US
dc.identifier.citedreferenceMandal, R.V., G.F. Forcione, W.R. Brugge, et al. 2009. Effect of tumor characteristics and duplication of the muscularis mucosae on the endoscopic staging of superficial Barrett esophagus‐related neoplasia. Am. J. Surg. Pathol. 33: 620 – 625.en_US
dc.identifier.citedreferenceLewis, J.T., K.K. Wang & S.C. Abraham. 2008. Muscularis mucosae duplication and the musculo‐fibrous anomaly in endoscopic mucosal resections for barrett esophagus: implications for staging of adenocarcinoma. Am. J. Surg. Pathol. 32: 566 – 571.en_US
dc.identifier.citedreferenceHahn, H.P., A. Shahsafaei & R.D. Odze. 2008. Vascular and lymphatic properties of the superficial and deep lamina propria in Barrett esophagus. Am. J. Surg. Pathol. 32: 1454 – 1461.en_US
dc.identifier.citedreferenceTakubo, K. 1981. Squamous metaplasia with reserve cell hyperplasia in the esophagogastric junction zone. Acta Pathol. Jpn. 31: 349 – 359.en_US
dc.identifier.citedreferenceShields, H.M., S.J. Rosenberg, F.R. Zwas, et al. 2001. Prospective evaluation multilayered epithelium in Barrett's esophagus. Am. J. Gastroenterol. 96: 3268 – 3273.en_US
dc.identifier.citedreferenceGlickman, J.N., Y. Chen, D. Antonioli, et al. 2001. Characterization of a distinctive multilayered epithelium associated with Barrett's esophagus. Am. J. Surg. Pathol. 25: 569 – 578.en_US
dc.identifier.citedreferenceTakubo, K., M. Vieth, N. Honma, et al. 2005. Ciliated surface in the esophagogastric junction zone: a precursor of Barrett's mucosa or ciliated pseudostratified metaplasia? Am. J. Surg. Pathol. 29: 211 – 217.en_US
dc.identifier.citedreferenceShields, H.M., F. Zwas, D.A. Antonioli, et al. 1993. Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett's epithelium. Dig. Dis. Sci. 38: 97 – 108.en_US
dc.identifier.citedreferenceGlickman, J.N., S.J. Spechler, R.F. Souza, et al. 2009. Multilayered epithelium in mucosal biopsy specimens from the gastroesophageal junction region is a histologic marker of gastroesophageal reflux disease. Am. J. Surg. Pathol. 33: 818 – 825.en_US
dc.identifier.citedreferenceOkuda, T. & T. Ogata. 1976. An electron microscopic study of the ciliated cells in the human gastric mucosa. Arch. Histol. Jpn. 39: 149 – 156.en_US
dc.identifier.citedreferenceTorikata, C. et al. 1989. Ultrastructure of metaplastic ciliated cells in human stomach. Virchows Arch A Pathol. Anat. 414: 113 – 119.en_US
dc.identifier.citedreferenceRubio, C., T. Hayashi & G. Stemmermann. 1990. Ciliated gastric cells: a study of their phenotypic characteristics. Mod. Pathol. 3: 720 – 723.en_US
dc.identifier.citedreferenceBlanpain, C. & E. Fuchs. 2009. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10: 207 – 217.en_US
dc.identifier.citedreferenceLander, A.D., J. Kimble, H. Clevers, et al. 2012. What does the concept of the stem cell niche really mean today? BMC Biol. 10: 19.en_US
dc.identifier.citedreferenceKalabis, J., K. Oyama, T. Okawa, et al. 2008. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self‐renewal and lineage specification. J. Clin. Invest. 118: 3860 – 3869.en_US
dc.identifier.citedreferenceLu, C.P., L. Polak, A.S. Rocha, et al. 2012. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150: 136 – 150.en_US
dc.identifier.citedreferenceCoad, R.A., A.C. Woodman, P.J. Warner, et al. 2005. On the histogenesis of Barrett's oesophagus and its associated squamous islands: a three‐dimensional study of their morphological relationship with native oesophageal gland ducts. J. Pathol. 206: 388 – 394.en_US
dc.identifier.citedreferenceLeedham, S.J., S.L. Preston & S.A. McDonald. 2008. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's oesophagus. Gut 57: 1041 – 1048.en_US
dc.identifier.citedreferenceNicholson, A.M., T.A. Graham, A. Simpson, et al. 2012. Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut 61: 1380 – 1389.en_US
dc.identifier.citedreferenceSenoo, M., F. Pinta, C.P. Crum, et al. 2007. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129: 523 – 536.en_US
dc.identifier.citedreferenceWang, X., H. Ouyang, Y. Yamamoto, et al. 2011. Residual embryonic cells as precursors of a Barrett's‐like metaplasia. Cell 145: 1023 – 1035.en_US
dc.identifier.citedreferenceHamilton, S.R. & J.H. Yardley. 1977. Regeneration of cardiac type mucosa and acquisition of Barrett mucosa after esophagogastrostomy. Gastroenterology 72: 669 – 675.en_US
dc.identifier.citedreferenceTosh, D. & J.M. Slack. 2002. How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 3: 187 – 194.en_US
dc.identifier.citedreferenceMorrison, S.J. & A.C. Spradling. 2008. Stem cells and niches: mechanisms that promote stem cells maintenance throughout life. Cell 132: 598 – 611.en_US
dc.identifier.citedreferenceSeery, J.P. 2002. Stem cells of the oesophageal epithelium. J. Cell Sci. 115: 1783 – 1789.en_US
dc.identifier.citedreferenceSeery, J.P. & F.M. Watt. 2000. Asymmetric stem‐cell divisions define the architecture of human oesophageal epithelium. Curr. Biol. 10: 1447 – 1450.en_US
dc.identifier.citedreferenceAhnen, D.J., R. Poulsom, G.W. Stamp, et al. 1994. The ulceration‐associated cell lineage (UACL) reiterates the Brunner's gland differentiation program but acquires the proliferative organization of the gastric gland. J. Pathol. 173: 317 – 326.en_US
dc.identifier.citedreferenceBarbera, M. & R.C. Fitzgerald. 2010. Cellular origin of Barrett's metaplasia and oesophageal stem cells. Biochem. Soc. Trans. 38: 370 – 373.en_US
dc.identifier.citedreferenceSarosi, G., G. Brown & K. Jaiswal. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett's esophagus. Dis. Esophagus 21: 43 – 50.en_US
dc.identifier.citedreferenceHopwood, D., G. Milne & K.R. Logan. 1979. Electron microscopic changes in human oesophageal epithelium in oesophagitis. J. Pathol. 129: 161 – 167.en_US
dc.identifier.citedreferencePope, C.E.I. 1978. Gastroesophageal reflux disease (reflux esophagitis). In Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. M.H. Sleisenger & J.S. Fordtran, Eds.: 541 – 568. 2nd ed. Philadelphia: Saunders.en_US
dc.identifier.citedreferenceTobey, N.A., J.L. Carson, R.A. Alkiek & R.C. Orlando. 1996. Dilated intercellular spaces: a morphological feature of acid reflux–damaged human esophageal epithelium. Gastroenterology 111: 1200 – 1205.en_US
dc.identifier.citedreferenceZentilin, P., V. Savarino, L. Mastracci, et al. 2005. Reassessment of the diagnostic value of histology in patients with GERD, using multiple biopsy sites and an appropriate control group. Am. J. Gastroenterol. 100: 2299 – 306.en_US
dc.identifier.citedreferenceDent, J. 2007. Microscopic esophageal mucosal injury in nonerosive reflux disease. Clin. Gastroenterol. Hepatol. 5: 4 – 16.en_US
dc.identifier.citedreferenceBove, M., M. Vieth, F. Dombrowski, et al. 2005. Acid challenge to the human esophageal mucosa: effects on epithelial architecture in health and disease. Dig. Dis. Sci. 50: 1488 – 1496.en_US
dc.identifier.citedreferenceFarré, R., H. van Malenstein, R. De Vos, et al. 2008. Short exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can impair mucosal integrity and provoke dilated intercellular spaces. Gut 57: 1366 – 1374.en_US
dc.identifier.citedreferenceTadiparthi, R.A., A. Bansal, S. Wani, et al. 2011. Dilated intercellular spaces and lymphocytes on biopsy relate to symptoms in erosive GERD but not NERD. Aliment Pharmacol. Ther. 33: 1202 – 1208.en_US
dc.identifier.citedreferenceVaezi, M.F., J.C. Slaughter, B.S. Smith, et al. 2010. Dilated intercellular space in chronic laryngitis and gastro‐oesophageal reflux disease: at baseline and post‐lansoprazole therapy. Aliment Pharmacol. Ther. 32: 916 – 924.en_US
dc.identifier.citedreferenceKonturek, P.C., T. Brzozowski & S.J. Konturek. 2011. Gut clock: implication of circadian rhythms in the gastrointestinal tract. J. Physiol. Pharmacol.: Off. J. Polish Physiol. Soc. 62: 139 – 150.en_US
dc.identifier.citedreferencePohl, H. & H.G. Welch. 2005. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J. Natl. Cancer Inst. 97: 142 – 146.en_US
dc.identifier.citedreferencePatrick, L. 2011. Gastroesophageal reflux disease (GERD): a review of conventional and alternative treatments. Altern. Med. Rev. 16: 116 – 133.en_US
dc.identifier.citedreferenceAllende, D.S. & L.M. Yerian. 2009. Diagnosing gastroesophageal reflux disease: the pathologist's perspective. Adv. Anat. Pathol. 16: 161 – 165.en_US
dc.identifier.citedreferenceNeumann, H. et al. 2011. Intercellular space volume is mainly increased in the basal layer of esophageal squamous epithelium in patients with GERD. Dig. Dis. Sci. 56: 1404 – 1411.en_US
dc.identifier.citedreferenceYerian, L. et al. 2011. Refinement and reproducibility of histologic criteria for the assessment of microscopic lesions in patients with gastroesophageal reflux disease: the Esohisto Project. Dig. Dis. Sci. 56: 2656 – 2665.en_US
dc.identifier.citedreferenceFarre, R. et al. 2007. Critical role of stress in increased oesophageal mucosa permeability and dilated intercellular spaces. Gut 56: 1191 – 1197.en_US
dc.identifier.citedreferenceSouza, R.F. et al. 2009. Gastroesophageal reflux might cause esophagitis through a cytokine‐mediated mechanism rather than caustic acid injury. Gastroenterology 137: 1776 – 1784.en_US
dc.identifier.citedreferenceSridhara, S. et al. 2012. Increased numbers of eosinophils, rather than only etiology, predict histologic changes in patients with esophageal eosinophilia. Clin. Gastroenterol. Hepatol. 10: 735 – 741.en_US
dc.identifier.citedreferenceRubio, C.A. & B. Aberg. 1991. Further studies on the musculo‐fibrous anomaly of the Barrett's mucosa in esophageal carcinomas. Pathol. Res. Pract. 187: 1009 – 1013.en_US
dc.identifier.citedreferenceLiu, L., W.L. Hofstetter, A. Rashid, et al. 2005. Significance of the depth of tumor invasion and lymph node metastasis in superficially invasive (T1) esophageal adenocarcinoma. Am. J. Surg. Pathol. 29: 1079 – 1085.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.