Show simple item record

Electromagnetic energy harvester for monitoring wind turbine blades

dc.contributor.authorJoyce, B. S.en_US
dc.contributor.authorFarmer, J.en_US
dc.contributor.authorInman, D. J.en_US
dc.date.accessioned2014-05-23T15:59:06Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-05-23T15:59:06Z
dc.date.issued2014-06en_US
dc.identifier.citationJoyce, B. S.; Farmer, J.; Inman, D. J. (2014). "Electromagnetic energy harvester for monitoring wind turbine blades." Wind Energy 17(6): 869-876.en_US
dc.identifier.issn1095-4244en_US
dc.identifier.issn1099-1824en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106845
dc.description.abstractThe long composite blades on large wind turbines experience tremendous stresses while in operation. There is an interest in implementing structural health monitoring (SHM) systems inside wind turbine blades to alert maintenance teams of damage before serious component failure occurs. This paper proposes using an energy harvesting device inside the blade of a horizontal axis wind turbine to power a SHM system. The harvester is a linear induction energy harvester placed radially along the length of the blade. The rotation of the blade causes a magnet to slide along a tube as the blade axis changes relative to the direction of gravity. The magnet induces a voltage in a coil around the tube, and this voltage powers the SHM system. This paper begins by discussing motivation for this project. Next, a harvester model is developed, which encompasses the mechanics of the magnet, the interaction between the magnet and the coil, and the current in the electrical circuit. A free fall test verifies the electromechanical coupling model, and a rotating test examines the power output of a prototype harvester. Copyright © 2013 John Wiley & Sons, Ltd.en_US
dc.publisherIMAC XXVIIIen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherWind Turbine Bladesen_US
dc.subject.otherElectromagneticen_US
dc.subject.otherEnergy Harvestingen_US
dc.subject.otherStructural Health Monitoringen_US
dc.titleElectromagnetic energy harvester for monitoring wind turbine bladesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106845/1/we1602.pdf
dc.identifier.doi10.1002/we.1602en_US
dc.identifier.sourceWind Energyen_US
dc.identifier.citedreferenceSutherland H. On the fatigue analysis of wind turbines. SAND99‐0089, Sandia National Laboratories, 1999.en_US
dc.identifier.citedreferenceSimmermacher T, James GH, Hurtado JE. Structural health monitoring of wind turbines. Proceedings of the International Workshop on Structural Health Monitoring, Stanford, CA, 1997, 788 – 797.en_US
dc.identifier.citedreferencePitchford CW. Impedance‐based structural health monitoring of wind turbine blades. [Online]. Available: http://scholar.lib.vt.edu/theses/available/etd‐09062007‐140545/. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferenceAWEO.org. Size specifications of common industrial wind turbines. [Online]. Available: http://www.aweo.org/windmodels.html. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferenceJonkman J, Butterfield S, Musial W, Scott F. Definition of a 5‐MW reference wind turbine for offshore system development. [Online]. Available: https://ceprofs.civil.tamu.edu/jzhang/ocen407/5MW%20Reference%20Turbine.pdf. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferenceCarlson C, Schlichting A, Ouellette S, Farinholt K, Park G. Energy Harvesting to Power Sensing Hardware Onboard Wind Turbine Blade. IMAC XXVIII, Jacksonville, FL, 2010.en_US
dc.identifier.citedreferenceConrad SD. Development of an inertial generator for embedded applications in rotating environments. [Online]. Available: http://dspace.mit.edu/handle/1721.1/40947. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferenceGu L, Livermore C. Passive self‐turning energy harvester for extracting energy from rotational motion. Applied Physics Letters 2010; 97: 081904:1 – 081904:3. DOI: 10.1063/1.3481689.en_US
dc.identifier.citedreferenceManla G, White NM, and Tudor J. Harvesting energy from vehicle wheels. 15th International Conference on Solid‐state Sensors, Actuators and Microsystems. Transducers 2009; 1389 – 1392. DOI: 10.1109/SENSOR.2009.5285831.en_US
dc.identifier.citedreferenceBedekar V, Oliver J, Priya S. Pen harvester for powering a pulse rate sensor. Journal of Physics D: Applied Physics 2009, 42: 105105:1 – 105105:9. DOI: 10.1088/0022‐3727/42/10/105105.en_US
dc.identifier.citedreferenceToh T, Mitcheson P, Holmes A, Yeatman E. A continuously rotating energy harvester with maximum power point tracking. Journal of Micromechanics and Microengineering 2008; 18: 104008:1 – 104008:7. DOI: 10.1088/0960‐1317/18/10/104008.en_US
dc.identifier.citedreferenceJoyce BS. Development of an electromagnetic energy harvester for monitoring wind turbine blades. [Online]. Available: http://scholar.lib.vt.edu/theses/available/etd‐12202011‐195538/. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferenceSneller AJ, Mann BP. On the nonlinear electromagnetic coupling between a coil and an oscillating magnet. Journal of Physics D: Applied Physics 2010; 43: 295005:1 – 295005:10. DOI: 10.1088/0022‐3727/43/29/295005.en_US
dc.identifier.citedreferenceMagcraft. Permanent Magnet Selection and Design Handbook. National Imports LLC: Vienna, Virginia, 2007; 5.en_US
dc.identifier.citedreferencePhysical Acoustics Corporation. 1282 acoustic emission wireless node & system. [Online]. Available: http://www.mistrasgroup.com/products/company/publications/2 $Acoustic_Emission/1282_Wireless.pdf. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferencePhysical Acoustics Corporation. USB acoustic emission (AE) node. [Online]. Available: http://www.mistrasgroup.com/products/company/publications/2 $Acoustic_Emission/USB_AE_Node.pdf. (Accessed 12 January 2012 ).en_US
dc.identifier.citedreferenceGrisso BL, Kim J, Farmer JR, Ha DS, Inman DJ. Thermal Energy Harvested to Power Digital SHM Hardware. Virginia Space Grant Consortium, Norfolk, VA, 2008.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.