Show simple item record

Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths

dc.contributor.authorHunter, Mark D.en_US
dc.contributor.authorKozlov, Mikhail V.en_US
dc.contributor.authorItämies, Juhanien_US
dc.contributor.authorPulliainen, Erkkien_US
dc.contributor.authorBäck, Jaanaen_US
dc.contributor.authorKyrö, Ella‐mariaen_US
dc.contributor.authorNiemelä, Pekkaen_US
dc.date.accessioned2014-05-23T15:59:11Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-05-23T15:59:11Z
dc.date.issued2014-06en_US
dc.identifier.citationHunter, Mark D.; Kozlov, Mikhail V.; Itämies, Juhani ; Pulliainen, Erkki; Bäck, Jaana ; Kyrö, Ella‐maria ; Niemelä, Pekka (2014). "Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths." Global Change Biology 20(6): 1723-1737.en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106856
dc.description.abstractChanges in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time‐series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life‐history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time‐series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces.en_US
dc.publisherIntercepten_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMoth Declinesen_US
dc.subject.otherBiodiversityen_US
dc.subject.otherClimate Changeen_US
dc.subject.otherForest Insectsen_US
dc.subject.otherLepidopteraen_US
dc.subject.otherLife‐History Traitsen_US
dc.subject.otherTime‐Series Analysisen_US
dc.titleCurrent temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest mothsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106856/1/gcb12529.pdf
dc.identifier.doi10.1111/gcb.12529en_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceRoyama T ( 1992 ) Analytical Population Dynamics. Springer, New York.en_US
dc.identifier.citedreferenceParry ML, Canziani OF, Palutikof JP, Linden PJVD, Hanson CE (eds.) ( 2007 ) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferencePateman RM, Hill JK, Roy DB, Fox R, Thomas CD ( 2012 ) Temperature‐dependent alterations in host use drive rapid range expansion in a butterfly. Science, 336, 1028 – 1030.en_US
dc.identifier.citedreferencePollard E, Lakhani KH, Rothery P ( 1987 ) The detection of density dependence from a series of annual censuses. Ecology, 68, 2046 – 2055.en_US
dc.identifier.citedreferencePrice PW, Hunter MD ( 2005 ) Long‐term population dynamics of a sawfly show strong bottom‐up effects. Journal of Animal Ecology, 74, 917 – 925.en_US
dc.identifier.citedreferencePulliainen E, Itämies J ( 1988 ) Xestia communities (Lepidoptera, Noctuidae) in eastern Finnish Forest Lapland as indicated by light trap sampling. Holarctic Ecology, 11, 235 – 240.en_US
dc.identifier.citedreferenceRedfern M, Hunter MD ( 2005 ) Time tells: long‐term patterns in the population dynamics of the yew gall midge, Taxomyia taxi (Cecidomyiidae), over 35 years. Ecological Entomology, 30, 86 – 95.en_US
dc.identifier.citedreferenceRoland J, Matter SF ( 2012 ) Variability in winter climate and winter extremes reduces population growth of an alpine butterfly. Ecology, 94, 190 – 199.en_US
dc.identifier.citedreferenceSalama NKG, Knowler JT, Adams CE ( 2007 ) Increasing abundance and diversity in the moth assemblage of east Loch Lomondside, Scotland over a 35 year period. Journal of Insect Conservation, 11, 151 – 156.en_US
dc.identifier.citedreferenceSibly RM, Hone J ( 2002 ) Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London B‐Biological Sciences, 357, 1153 – 1170.en_US
dc.identifier.citedreferenceSlade EM, Merckx T, Riutta T, Bebber DP, Redhead D, Riordan P, Macdonald DW ( 2013 ) Life‐history traits and landscape characteristics predict macro‐moth responses to forest fragmentation. Ecology, 94, 1519 – 1530.en_US
dc.identifier.citedreferenceSpeight MR, Hunter MD, Watt AD ( 2008 ) The Ecology of Insects: Concepts and Applications. Wiley‐Blackwell, Oxford.en_US
dc.identifier.citedreferenceStefanescu C, Torre I, Jubany J, Paramo F ( 2011 ) Recent trends in butterfly populations from north‐east Spain and Andorra in the light of habitat and climate change. Journal of Insect Conservation, 15, 83 – 93.en_US
dc.identifier.citedreferenceStireman JO, Dyer LA, Janzen DH et al. ( 2005 ) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proceedings of the National Academy of Sciences of the United States of America, 102, 17384 – 17387.en_US
dc.identifier.citedreferenceSullivan MS, Gilbert F, Rotheray G, Croasdale S, Jones M ( 2000 ) Comparative analyses of correlates of Red data book status: a case study using European hoverflies (Diptera: Syrphidae). Animal Conservation, 3, 91 – 95.en_US
dc.identifier.citedreferenceSuominen O, Niemelä J, Martikainen P, Niemelä P, Kojola I ( 2003 ) Impact of reindeer grazing on ground‐dwelling Carabidae and Curculionidae assemblages in Lapland. Ecography, 26, 503 – 513.en_US
dc.identifier.citedreferenceThomas JA ( 2005 ) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philosophical Transactions of the Royal Society B‐Biological Sciences, 360, 339 – 357.en_US
dc.identifier.citedreferenceThomas CD, Cameron A, Green RE et al. ( 2004a ) Extinction risk from climate change. Nature, 427, 145 – 148.en_US
dc.identifier.citedreferenceThomas JA, Telfer MG, Roy DB et al. ( 2004b ) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879 – 1881.en_US
dc.identifier.citedreferenceTylianakis JM ( 2013 ) The global plight of pollinators. Science, 339, 1532 – 1533.en_US
dc.identifier.citedreferenceWalther GR, Post E, Convey P et al. ( 2002 ) Ecological responses to recent climate change. Nature, 416, 389 – 395.en_US
dc.identifier.citedreferenceWarren MS, Hill JK, Thomas JA et al. ( 2001 ) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414, 65 – 69.en_US
dc.identifier.citedreferenceWhite TCR ( 2008 ) The role of food, weather and climate in limiting the abundance of animals. Biological Reviews, 83, 227 – 248.en_US
dc.identifier.citedreferenceWilson EO ( 1987 ) The little things that run the world (the importance and conservation of invertebrates). Conservation Biology, 1, 344 – 346.en_US
dc.identifier.citedreferenceWilson RJ, Maclean IMD ( 2011 ) Recent evidence for the climate change threat to Lepidoptera and other insects. Journal of Insect Conservation, 15, 259 – 268.en_US
dc.identifier.citedreferenceWoiwod IP ( 1997 ) Detecting the effects of climate change on Lepidoptera. Journal of Insect Conservation, 1, 149 – 158.en_US
dc.identifier.citedreferenceWoiwod IP, Gould PJL ( 2008 ) Long‐term moth studies at Rothamsted. In: The Moths of Hertfordshire (ed. Plant CW ), pp. 31 – 44. Hertfordshire Natural History Society, Welwyn Garden City, UK.en_US
dc.identifier.citedreferenceXu L, Myneni RB, Chapin FS et al. ( 2013 ) Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 3, 581 – 586.en_US
dc.identifier.citedreferenceYan C, Stenseth NC, Krebs CJ, Zhang Z ( 2013 ) Linking climate change to population cycles of hares and lynx. Global Change Biology, 19, 3263 – 3271.en_US
dc.identifier.citedreferenceBale JS, Masters GJ, Hodkinson ID et al. ( 2002 ) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1 – 16.en_US
dc.identifier.citedreferenceBall BA, Hunter MD, Kominoski JS, Swan CM, Bradford MA ( 2008 ) Consequences of non‐random species loss for decomposition dynamics: experimental evidence for additive and non‐additive effects. Journal of Ecology, 96, 303 – 313.en_US
dc.identifier.citedreferenceBenton TG, Plaistow SJ, Coulson TN ( 2006 ) Complex population dynamics and complex causation: devils, details and demography. Proceedings of the Royal Society B‐Biological Sciences, 273, 1173 – 1181.en_US
dc.identifier.citedreferenceBishop JG ( 2002 ) Early primary succession on Mount St. Helens: impact of insect herbivores on colonizing lupines. Ecology, 83, 191 – 202.en_US
dc.identifier.citedreferenceBoggs CL, Inouye DW ( 2012 ) A single climate driver has direct and indirect effects on insect population dynamics. Ecology Letters, 15, 502 – 508.en_US
dc.identifier.citedreferenceBrook BW, Sodhi NS, Bradshaw CJA ( 2008 ) Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453 – 460.en_US
dc.identifier.citedreferenceBrower LP, Taylor OR, Williams EH, Slayback DA, Zubieta RR, Ramirez MI ( 2012 ) Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conservation and Diversity, 5, 95 – 100.en_US
dc.identifier.citedreferenceCardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C ( 2006 ) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989 – 992.en_US
dc.identifier.citedreferenceConrad KF, Woiwod IP, Parsons M, Fox R, Warren MS ( 2004 ) Long‐term population trends in widespread British moths. Journal of Insect Conservation, 8, 119 – 136.en_US
dc.identifier.citedreferenceConrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP ( 2006 ) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation, 132, 279 – 291.en_US
dc.identifier.citedreferenceCornulier T, Yoccoz NG, Bretagnolle V et al. ( 2013 ) Europe‐wide dampening of population cycles in keystone herbivores. Science, 340, 63 – 66.en_US
dc.identifier.citedreferenceDen Herder M, Kytoviita MM, Niemelä P ( 2003 ) Growth of reindeer lichens and effects of reindeer grazing on ground cover vegetation in a Scots pine forest and a subarctic heathland in Finnish Lapland. Ecography, 26, 3 – 12.en_US
dc.identifier.citedreferenceDennis RLH, Sparks TH ( 2007 ) Climate signals are reflected in an 89 year series of British Lepidoptera records. European Journal of Entomology, 104, 763 – 767.en_US
dc.identifier.citedreferenceForchhammer MC, Stenseth NC, Post E, Langvatn R ( 1998 ) Population dynamics of Norwegian red deer: density dependence and climatic variation. Proceedings of the Royal Society B‐Biological Sciences, 265, 341 – 350.en_US
dc.identifier.citedreferenceForister ML, Mccall AC, Sanders NJ et al. ( 2010 ) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 2088 – 2092.en_US
dc.identifier.citedreferenceForister ML, Jahner JP, Casner KL, Wilson JS, Shapiro AM ( 2011 ) The race is not to the swift: long‐term data reveal pervasive declines in California's low‐elevation butterfly fauna. Ecology, 92, 2222 – 2235.en_US
dc.identifier.citedreferenceFox R ( 2013 ) The decline of moths in Great Britain: a review of possible causes. Insect Conservation and Diversity, 6, 5 – 19.en_US
dc.identifier.citedreferenceFranzen M, Johannesson M ( 2007 ) Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. Journal of Insect Conservation, 11, 367 – 390.en_US
dc.identifier.citedreferenceGregory PJ, Johnson SN, Newton AC, Ingram JSI ( 2009 ) Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827 – 2838.en_US
dc.identifier.citedreferenceGroenendijk D, Ellis WN ( 2011 ) The state of the Dutch larger moth fauna. Journal of Insect Conservation, 15, 95 – 101.en_US
dc.identifier.citedreferenceHakala K, Hannukkala AO, Huusela‐Veistola E, Jalli M, Peltonen‐Sainio P ( 2011 ) Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agricultural and Food Science, 20, 3 – 14.en_US
dc.identifier.citedreferenceHansen BB, Grøtan V, Aanes R et al. ( 2013 ) Climate events synchronize the dynamics of a resident vertebrate community in the high arctic. Science, 339, 313 – 315.en_US
dc.identifier.citedreferenceHunter MD ( 1994 ) The search for pattern in pest outbreaks. In: Individuals, Populations and Patterns in Ecology (eds Leather SR, Watt AD, Mills NJ, Walters KFA ), pp. 443 – 448. Intercept, Andover.en_US
dc.identifier.citedreferenceHunter MD ( 1998 ) Interactions between Operophtera brumata and Tortrix viridana on oak: new evidence from time‐series analysis. Ecological Entomology, 23, 168 – 173.en_US
dc.identifier.citedreferenceHunter MD, Varley GC, Gradwell GR ( 1997 ) Estimating the relative roles of top‐down and bottom‐up forces on insect herbivore populations: a classic study revisited. Proceedings of the National Academy of Sciences of the United States of America, 94, 9176 – 9181.en_US
dc.identifier.citedreferenceHunter MD, Reynolds BC, Hall MC, Frost CJ ( 2012 ) Effects of herbivores on ecosystem processes: the role of trait‐mediated indirect effects. In: Trait‐Mediated Indirect Interactions Ecological and Evolutionary Perspectives (eds Ohgushi T, Schmitz OJ, Holt R ), pp. 339 – 370. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceJalas I ( 1960 ) Eine leichtgebaute, leichttransportable Lichtreuse zum Fangen von Schmetterlingen. Annales Entomologici Fennici, 26, 44 – 50.en_US
dc.identifier.citedreferenceKadlec T, Kotela M, Novák I, Konvička M, Jarošik V ( 2009 ) Effect of land use and climate on the diversity of moth guilds with different habitat specialization. Community Ecology, 10, 152 – 158.en_US
dc.identifier.citedreferenceKarsholt O, Van Nieukerken EJ, De Jong YSDM ( 2012 ) Lepidoptera, Moths. Fauna Europaea version 2.5. Available at: http://www.faunaeur.org.en_US
dc.identifier.citedreferenceKausrud K, Okland B, Skarpaas O, Gregoire JC, Erbilgin N, Stenseth NC ( 2012 ) Population dynamics in changing environments: the case of an eruptive forest pest species. Biological Reviews, 87, 34 – 51.en_US
dc.identifier.citedreferenceKocsis M, Hufnagel L ( 2011 ) Impacts of climate change on Lepidoptera species and communities. Applied Ecology and Environmental Research, 9, 43 – 72.en_US
dc.identifier.citedreferenceKoh LP, Sodhi NS, Brook BW ( 2004 ) Ecological correlates of extinction proneness in tropical butterflies. Conservation Biology, 18, 1571 – 1578.en_US
dc.identifier.citedreferenceKotiaho JS, Kaitala V, Komonen A, Paivinen J ( 2005 ) Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences of the United States of America, 102, 1963 – 1967.en_US
dc.identifier.citedreferenceKotze DJ, O'hara RB ( 2003 ) Species decline ‐ but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia, 135, 138 – 148.en_US
dc.identifier.citedreferenceKozlov MV, Hunter MD, Koponen S, Kouki J, Niemelä P, Price PW ( 2010 ) Diverse population trajectories among coexisting species of subarctic forest moths. Population Ecology, 52, 295 – 305.en_US
dc.identifier.citedreferenceKozlov MV, van Nieukerken EJ, Zverev V, Zvereva EL ( 2013 ) Abundance and diversity of birch‐feeding leafminers along latitudinal gradients in northern Europe. Ecography, 36, 1138 – 1149.en_US
dc.identifier.citedreferenceKurz WA, Dymond CC, Stinson G et al. ( 2008 ) Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987 – 990.en_US
dc.identifier.citedreferenceMaclean IMD, Wilson RJ ( 2011 ) Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108, 12337 – 12342.en_US
dc.identifier.citedreferenceMattila N, Kaitala V, Komonen A, Kotiaho JS, Paivinen J ( 2006 ) Ecological determinants of distribution decline and risk of extinction in moths. Conservation Biology, 20, 1161 – 1168.en_US
dc.identifier.citedreferenceMattila M, Kotiaho JS, Kaitala V, Komonen A ( 2008 ) The use of ecological traits in extinction risk assessments: a case study on geometrid moths. Biological Conservation, 141, 2322 – 2328.en_US
dc.identifier.citedreferenceMattila N, Kotiaho JS, Kaitala V, Komonen A, Paivinen J ( 2009 ) Interactions between ecological traits and host plant type explain distribution change in noctuid moths. Conservation Biology, 23, 703 – 709.en_US
dc.identifier.citedreferenceMattila N, Kaitala V, Komonen A, Paivinen J, Kotiaho JS ( 2011 ) Ecological correlates of distribution change and range shift in butterflies. Insect Conservation and Diversity, 4, 239 – 246.en_US
dc.identifier.citedreferenceMclaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR ( 2002 ) Climate change hastens population extinctions. Proceedings of the National Academy of Sciences of the United States of America, 99, 6070 – 6074.en_US
dc.identifier.citedreferenceMorecroft MD, Bealey CE, Beaumont DA et al. ( 2009 ) The UK environmental change network: emerging trends in the composition of plant and animal communities and the physical environment. Biological Conservation, 142, 2814 – 2832.en_US
dc.identifier.citedreferenceOdum EP ( 1953 ) Fundamentals of Ecology. W. B. Saunders Company, Philadelphia.en_US
dc.identifier.citedreferenceParitsis J, Veblen TT ( 2011 ) Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Global Change Biology, 17, 239 – 253.en_US
dc.identifier.citedreferenceParmesan C ( 1996 ) Climate and species range. Nature, 382, 765 – 766.en_US
dc.identifier.citedreferenceParmesan C ( 2006 ) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637 – 669.en_US
dc.identifier.citedreferenceParmesan C, Yohe G ( 2003 ) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37 – 42.en_US
dc.identifier.citedreferenceParmesan C, Ryrholm N, Stefanescu C et al. ( 1999 ) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579 – 583.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.