Show simple item record

Simulating the effect of centrifugal forces in Jupiter's magnetosphere

dc.contributor.authorVogt, Marissa F.en_US
dc.contributor.authorKivelson, Margaret G.en_US
dc.contributor.authorKhurana, Krishan K.en_US
dc.contributor.authorWalker, Raymond J.en_US
dc.contributor.authorAshour‐abdalla, Mahaen_US
dc.contributor.authorBunce, Emma J.en_US
dc.date.accessioned2014-05-23T15:59:17Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationVogt, Marissa F.; Kivelson, Margaret G.; Khurana, Krishan K.; Walker, Raymond J.; Ashour‐abdalla, Maha ; Bunce, Emma J. (2014). "Simulating the effect of centrifugal forces in Jupiter's magnetosphere." Journal of Geophysical Research: Space Physics 119(3): 1925-1950.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106869
dc.description.abstractJupiter's large scale size and rapid planetary rotation period combine to produce the strong centrifugal force responsible for many unique properties of its magnetosphere. It was previously proposed that this centrifugal force and nonadiabatic field line stretching could cause the observed dawn‐dusk asymmetry of Jupiter's plasma sheet, which is thickest near dusk. As flux tubes rotate and stretch between noon and dusk, particles bouncing along the field gain parallel energy and create pressure anisotropy. Because bounce times can be long compared with the outward expansion timescale, particles may respond nonadiabatically, and the resulting pressure anisotropy can drive the plasma sheet to instability. We used a large‐scale kinetic simulation to follow a collection of rotating particles as they move in a time‐varying, rotating magnetic field designed to represent flux tube expansion in Jupiter's magnetosphere. The analysis quantifies the response of trapped particles by characterizing the pressure anisotropy and energy changes. We compare results of nonadiabatic and adiabatic outward expansions and find that the nonadiabatic case leads to a large pitch angle anisotropy and higher total energy than for adiabatic expansion. Although the calculation was not handled fully self‐consistently, the results support the proposition that plasma pressure changes lead to changes in the magnetic field structure with local time. Our findings are consistent with the idea that nonadiabatic effects in Jupiter's magnetosphere contribute to field dipolarization and the observed plasma sheet thickening between noon and dusk. Key Points The centrifugal force accelerates particles during outward flux tube expansion Nonadiabatic flux tube expansion occurs at Jupiter between noon and dusk LT These effects can explain why Jupiter's plasma sheet thickens from 12 to 18 LTen_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherJupiteren_US
dc.subject.otherCentrifugal Forceen_US
dc.subject.otherParticle Accelerationen_US
dc.subject.otherLocal Time Asymmetryen_US
dc.subject.otherPlasma Sheeten_US
dc.subject.otherKinetic Simulationen_US
dc.titleSimulating the effect of centrifugal forces in Jupiter's magnetosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106869/1/jgra50908.pdf
dc.identifier.doi10.1002/2013JA019381en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceMcNutt, R. L., Jr. ( 1983 ), Force balance in the magnetospheres of Jupiter and Saturn, Adv. Space Res., 3, 55 – 58.en_US
dc.identifier.citedreferenceKane, M., B. H. Mauk, E. P. Keath, and S. M. Krimigis ( 1995 ), Hot ions in Jupiter's magnetodisc: A model for Voyager 2 low‐energy charged particle measurements, J. Geophys. Res., 100, 19,473 – 19,486.en_US
dc.identifier.citedreferenceKane, M., D. J. Williams, B. H. Mauk, R. W. McEntire, and E. C. Roelof ( 1999 ), Galileo energetic particles detector measurements of hot ions in the neutral sheet region of Jupiter's magnetodisk, Geophys. Res. Lett., 26, 5 – 8.en_US
dc.identifier.citedreferenceKhurana, K. K. ( 1992 ), A generalized hinged‐magnetodisc model of Jupiter's nightside current sheet, J. Geophys. Res., 97, 6269 – 6276.en_US
dc.identifier.citedreferenceKhurana, K. K. ( 1997 ), Euler potential models of Jupiter's magnetospheric field, J. Geophys. Res., 102, 11,295 – 11,306.en_US
dc.identifier.citedreferenceKhurana, K. K., and M. G. Kivelson ( 1989 ), On Jovian plasma sheet structure, J. Geophys. Res., 94, 11,791 – 11,803.en_US
dc.identifier.citedreferenceKhurana, K. K., and H. K. Schwarzl ( 2005 ), Global structure of Jupiter's magnetospheric current sheet, J. Geophys. Res., 110, A07227, doi: 10.1029/2004JA010757.en_US
dc.identifier.citedreferenceKhurana, K. K., M. G. Kivelson, V. M. Vasyliūnas, N. Krupp, J. Woch, A. Lagg, B. H. Mauk, and W. S. Kurth ( 2004 ), The configuration of Jupiter's magnetosphere, in Jupiter: The Planet, Satellites, and Magnetosphere, edited by F. Bagenal et al., chap. 24, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceKivelson, M. G., and K. K. Khurana ( 2002 ), Properties of the magnetic field in the Jovian magnetotail, J. Geophys. Res., 107 ( A8 ), 1196, doi: 10.1029/2001JA000249.en_US
dc.identifier.citedreferenceKivelson, M. G., and D. J. Southwood ( 2005 ), Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere, J. Geophys. Res., 110, A12209, doi: 10.1029/2005JA011176.en_US
dc.identifier.citedreferenceKrimigis, S. M., J. F. Carbary, E. P. Keath, C. O. Bostrom, W. I. Axford, G. Gloeckler, L. J. Lanzerotti, and T. P. Armstrong ( 1981 ), Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft, J. Geophys. Res., 86, 8227 – 8257.en_US
dc.identifier.citedreferenceKrupp, N., A. Lagg, S. Livi, B. Wilken, J. Woch, E. Roelof, and D. Williams ( 2001 ), Global flows of energetic ions in Jupiter's equatorial plane: First‐order approximation, J. Geophys. Res., 106, 26,017 – 26,032.en_US
dc.identifier.citedreferenceLanzerotti, L. J., et al. ( 1993 ), Planet. Space Sci., 41, 893 – 917.en_US
dc.identifier.citedreferenceLanzerotti, L. J., et al. ( 1993 ), Measurements of hot plasmas in the magnetosphere of Jupiter, Planet. Space Sci., 41, 893 – 917.en_US
dc.identifier.citedreferenceMcNutt, R. L., Jr., J. W. Belcher, and H. S. Bridge ( 1981 ), Position ion observations in the middle magnetosphere of Jupiter, J. Geophys. Res., 86, 8319 – 8342, doi: 10.1029/JA086iA10p08319.en_US
dc.identifier.citedreferenceNorthrop, T. G. ( 1963 ), The Adiabatic Motion of Charged Particles, InterScience, New York.en_US
dc.identifier.citedreferenceNorthrop, T. G., and T. J. Birmingham ( 1982 ), Adiabatic charged particle motion in rapidly rotating magnetospheres, J. Geophys. Res., 87, 661 – 669.en_US
dc.identifier.citedreferenceNorthrop, T. G., and E. Teller ( 1960 ), Stability of the adiabatic motion of charged particles in the Earth's field, Phys. Rev., 117 ( 1 ), 215 – 225.en_US
dc.identifier.citedreferencePierrard, V., and J. Lemaire ( 1996 ), Lorentzian ion exosphere model, J. Geophys. Res., 101, 7923 – 7934.en_US
dc.identifier.citedreferenceSouthwood, D. J., and M. G. Kivelson ( 1975 ), An approximate analytic description of plasma bulk parameters and pitch angle anisotropy under adiabatic flow in a dipolar magnetospheric field, J. Geophys. Res., 80, 2069 – 2073.en_US
dc.identifier.citedreferenceTreumann, R. A., and W. Baumjohann ( 2001 ), Advanced Space Plasma Physics, Imperial College Press, London, U. K.en_US
dc.identifier.citedreferenceVasyliūnas, V. M. ( 1968 ), A survey of low‐energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839 – 2884.en_US
dc.identifier.citedreferenceVasyliūnas, V. M. ( 1983 ), Plasma distribution and flow, in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, pp. 395 – 453, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceWaldrop, L. S., T. A. Fritz, M. G. Kivelson, K. Khurana, N. Krupp, and A. Lagg ( 2005 ), Jovian plasma sheet morphology: Particle and field observations by the Galileo spacecraft, Planet. Space Sci., 53, 681 – 692.en_US
dc.identifier.citedreferenceWalker, R. J., M. G. Kivelson, and A. W. Schardt ( 1978 ), High β plasma in the dynamic Jovian current sheet, Geophys. Res. Lett., 5, 799 – 802.en_US
dc.identifier.citedreferenceWilliams, D. J., R. W. McEntire, S. Jaskulek, and B. Wilken ( 1992 ), The Galileo energetic particles detector, Space Sci. Rev., 60, 385 – 412.en_US
dc.identifier.citedreferenceAshour‐Abdalla, M., J. P. Berchem, J. Büchner, and L. M. Zelenyi ( 1993 ), Shaping of the magnetotail from the mantle: Global and local structuring, J. Geophys. Res., 98, 5651 – 5686.en_US
dc.identifier.citedreferenceBagenal, F., and J. D. Sullivan ( 1981 ), Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter, J. Geophys. Res., 86, 8447 – 8466.en_US
dc.identifier.citedreferenceBagenal, F., J. D. Sullivan, and G. L. Siscoe ( 1980 ), Spatial distribution of plasma in the Io torus, Geophys. Res. Lett., 7, 41 – 44.en_US
dc.identifier.citedreferenceBehannon, K. W., L. F. Burlaga, and N. F. Ness ( 1981 ), The Jovian magnetotail and its current sheet, J. Geophys. Res., 86, 8385 – 8401.en_US
dc.identifier.citedreferenceBelcher, J. W. ( 1983 ), The low energy plasma in the Jovian magnetosphere, in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, pp. 68 – 105, Cambridge Univ. Press, Cambridge, U. K., doi: 10.1017/CBO9780511564574.005.en_US
dc.identifier.citedreferenceBirmingham, T. J., and T. G. Northrop ( 1979 ), Theory of flux anisotropies in a guiding center plasma, J. Geophys. Res., 84, 41 – 45.en_US
dc.identifier.citedreferenceBüchner, J., and L. M. Zelenyi ( 1989 ), Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion, J. Geophys. Res., 94, 11,821 – 11,842, doi: 10.1029/JA094iA09p11821.en_US
dc.identifier.citedreferenceCowley, S. W. H., E. J. Bunce, T. S. Stallard, and S. Miller ( 2003 ), Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30 ( 5 ), 1220, doi: 10.1029/2002GL016030.en_US
dc.identifier.citedreferenceFrank, L. A. and W. R. Paterson ( 2002 ), Galileo observations of electron beams and thermal ions in Jupiter's magnetosphere and their relationship to the auroras, J. Geophys. Res., 107 ( A12 ), 1478, doi: 10.1029/2001JA009150.en_US
dc.identifier.citedreferenceFrank, L. A., and W. R. Paterson ( 2004 ), Plasmas observed near local noon in Jupiter's magnetosphere with the Galileo spacecraft, J. Geophys. Res., 109, A11217, doi: 10.1029/2002JA009795.en_US
dc.identifier.citedreferenceFrank, L. A., K. L. Ackerson, J. A. Lee, M. R. English, and G. L. Pickett ( 1992 ), The plasma instrumentation for the Galileo mission, Space Sci. Rev., 60, 283 – 307.en_US
dc.identifier.citedreferenceGledhill, J. A. ( 1967 ), The structure of Jupiter's magnetosphere and the effect of Io on its decametric radio emission, NASA Tech. Memo. X‐55980, NASA / GSFC X Doc. 615‐67‐296.en_US
dc.identifier.citedreferenceGoertz, C. K., A. W. Schardt, J. A. Van Allen, and J. L. Parish ( 1979 ), Plasma in the Jovian current sheet, J. Geophys. Res., 6, 495 – 498.en_US
dc.identifier.citedreferenceHill, T. W., and F. C. Michel ( 1976 ), Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere, J. Geophys. Res., 81, 4561 – 4565.en_US
dc.identifier.citedreferenceHuang, T. S., and T. J. Birmingham ( 1992 ), The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma, J. Geophys. Res., 97, 1511 – 1519.en_US
dc.identifier.citedreferenceJoy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and T. Ogino ( 2002 ), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107 ( A10 ), 1309, doi: 10.1029/2001JA009146.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.