Show simple item record

Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer

dc.contributor.authorZuhlke, Kimberly A.en_US
dc.contributor.authorJohnson, Anna M.en_US
dc.contributor.authorTomlins, Scott A.en_US
dc.contributor.authorPalanisamy, Nallasivamen_US
dc.contributor.authorCarpten, John D.en_US
dc.contributor.authorLange, Ethan M.en_US
dc.contributor.authorIsaacs, William B.en_US
dc.contributor.authorCooney, Kathleen A.en_US
dc.date.accessioned2014-05-23T15:59:17Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-05-23T15:59:17Z
dc.date.issued2014-06en_US
dc.identifier.citationZuhlke, Kimberly A.; Johnson, Anna M.; Tomlins, Scott A.; Palanisamy, Nallasivam; Carpten, John D.; Lange, Ethan M.; Isaacs, William B.; Cooney, Kathleen A. (2014). "Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer." The Prostate 74(9): 983-990.en_US
dc.identifier.issn0270-4137en_US
dc.identifier.issn1097-0045en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106871
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGeneen_US
dc.subject.otherCandidate Linkage Regionen_US
dc.subject.otherFamilialen_US
dc.titleIdentification of a novel germline SPOP mutation in a family with hereditary prostate canceren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106871/1/pros22818.pdf
dc.identifier.doi10.1002/pros.22818en_US
dc.identifier.sourceThe Prostateen_US
dc.identifier.citedreferenceTomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, Schalken JA. ETS gene fusions in prostate cancer: From discovery to daily clinical practice. Eur Urol 2009; 56 ( 2 ): 275 – 286.en_US
dc.identifier.citedreferenceTomlins SA, Palanisamy N, Siddiqui J, Chinnaiyan AM, Kunju LP. Antibody‐based detection of ERG rearrangements in prostate core biopsies, including diagnostically challenging cases: ERG staining in prostate core biopsies. Arch Pathol Lab Med 2012; 136 ( 8 ): 935 – 946.en_US
dc.identifier.citedreferenceYoung A, Palanisamy N, Siddiqui J, Wood DP, Wei JT, Chinnaiyan AM, Kunju LP, Tomlins SA. Correlation of urine TMPRS S2: ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol 2012; 138 ( 5 ): 685 – 696.en_US
dc.identifier.citedreferencePark K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, Suleman K, Varambally S, Brenner JC, MacDonald T, Srivastava A, Tewari AK, Sathyanarayana U, Nagy D, Pestano G, Kunju LP, Demichelis F, Chinnaiyan AM, Rubin MA. Antibody‐based detection of ERG rearrangement‐positive prostate cancer. Neoplasia 2010; 12 ( 7 ): 590 – 598.en_US
dc.identifier.citedreferenceBunce MW, Boronenkov IV, Anderson RA. Coordinated activation of the nuclear ubiquitin ligase Cul3‐SPOP by the generation of phosphatidylinositol 5‐phosphate. J Biol Chem 2008; 283 ( 13 ): 8678 – 8686.en_US
dc.identifier.citedreferenceZhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA. Structures of SPOP‐substrate complexes: Insights into molecular architectures of BTB‐Cul3 ubiquitin ligases. Mol Cell 2009; 36 ( 1 ): 39 – 50.en_US
dc.identifier.citedreferenceSiegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64 ( 1 ): 9 – 29.en_US
dc.identifier.citedreferenceGeng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, Zimmermann M, Bond R, Shou J, Li C, Blattner M, Lonard DM, Demichelis F, Coarfa C, Rubin MA, Zhou P, O'Malley BW, Mitsiades N. Prostate cancer‐associated mutations in speckle‐type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci USA 2013; 110 ( 17 ): 6997 – 7002.en_US
dc.identifier.citedreferenceBlattner M, Lee DJ, O'Reilly C, Park K, Macdonald TY, Khani F, Turner KR, Chiu YL, Wild PJ, Dolgalev I, Heguy A, Sboner A, Ramazangolu S, Hieronymus H, Sawyers C, Tewari AK, Moch H, Yoon GS, Known YC, Andren O, Fall K, Demichelis F, Mosquera JM, Robinson BD, Barbieri CE, Rubin MA. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia 2014; 16 ( 1 ): 14 – 20.en_US
dc.identifier.citedreferenceAdams M, Cookson VJ, Higgins J, Martin HL, Tomlinson DC, Bond J, Morrison EE, Bell SM. A high‐throughput assay to identify modifiers of premature chromosome condensation. J Biomol Screen 2014; 19 ( 1 ): 176 – 183.en_US
dc.identifier.citedreferenceBarbieri CE, Tomlins SA. The prostate cancer genome: Perspectives and potential. Urol Oncol 2014; 32 ( 1 ): 53 e15 – 22.en_US
dc.identifier.citedreferenceTomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM. Role of the TMPRSS2‐ERG gene fusion in prostate cancer. Neoplasia 2008; 10 ( 2 ): 177 – 188.en_US
dc.identifier.citedreferenceTomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, Cao X, Wei JT, Rubin MA, Shah RB, Chinnaiyan AM. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006; 66 ( 7 ): 3396 – 3400.en_US
dc.identifier.citedreferenceTomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310 ( 5748 ): 644 – 648.en_US
dc.identifier.citedreferenceTomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS, Cao Q, Cao X, Andren O, Fall K, Johnson L, Wei JT, Shah RB, Al‐Ahmadie H, Eastham JA, Eggener SE, Fine SW, Hotakainen K, Stenman UH, Tsodikov A, Gerald WL, Lilja H, Reuter VE, Kantoff PW, Scardino PT, Rubin MA, Bjartell AS, Chinnaiyan AM. The role of SPINK1 in ETS rearrangement‐negative prostate cancers. Cancer Cell 2008; 13 ( 6 ): 519 – 528.en_US
dc.identifier.citedreferenceAnzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277 ( 5328 ): 965 – 968.en_US
dc.identifier.citedreferenceSakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M, Masuda K, Kimura A, Nakamura Y, Inazawa J, Abe T, Yamagishi H. Amplification and over‐expression of the AIB1 nuclear receptor co‐activator gene in primary gastric cancers. Int J Cancer 2000; 89 ( 3 ): 217 – 223.en_US
dc.identifier.citedreferenceWang Y, Wu MC, Sham JS, Zhang W, Wu WQ, Guan XY. Prognostic significance of c‐myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high‐throughput tissue microarray. Cancer 2002; 95 ( 11 ): 2346 – 2352.en_US
dc.identifier.citedreferenceGnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN. Expression of RAC 3, a steroid hormone receptor co‐activator in prostate cancer. Br J Cancer 2001; 85 ( 12 ): 1928 – 1936.en_US
dc.identifier.citedreferenceAgoulnik IU, Vaid A, Bingman WE III, Erdeme H, Frolov A, Smith CL, Ayala G, Ittmann MM, Weigel NL. Role of SRC‐1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 2005; 65 ( 17 ): 7959 – 7967.en_US
dc.identifier.citedreferenceAgoulnik IU, Vaid A, Nakka M, Alvarado M, Bingman WE III, Erdem H, Frolov A, Smith CL, Ayala GE, Ittmann MM, Weigel NL. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 2006; 66 ( 21 ): 10594 – 11602.en_US
dc.identifier.citedreferenceGenomes Project C. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA, An integrated map of genetic variation from 1, 092 human genomes. Nature 2012; 491 ( 7422 ): 56 – 65.en_US
dc.identifier.citedreferenceExome Variant Server. NHLBI Exome Sequencing Project (ESP). Seattle, WA. http://snp.gs.washington.edu/EVS/en_US
dc.identifier.citedreferenceLange EM, Gillanders EM, Davis CC, Brown WM, Campbell JK, Jones MP, Gildea D, Riedesel E, Albertus J, Freas‐Lutz D, Markey C, Giri V, Beebe‐Dimmer J, Montie JE, Trent JM, Cooney KA. Genome‐wide scan for prostate cancer susceptibility genes using families from the University of Michigan Prostate Cancer Genetics Project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 2003; 57 ( 4 ): 326 – 334.en_US
dc.identifier.citedreferenceLange EM, Robbins CM, Gillanders EM, Zheng SL, Xu J, Wang Y, White KA, Chang BL, Ho LA, Trent JM, Carpten JD, Isaacs WB, Cooney KA. Fine‐mapping the putative chromosome 17q 21–22 prostate cancer susceptibility gene to a 10 cM region based on linkage analysis. Hum Genet 2007; 121 ( 1 ): 49 – 55.en_US
dc.identifier.citedreferenceEwing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y, Bizon C, Yan G, Gielzak M, Partin AW, Shanmugam V, Izatt T, Sinari S, Craig DW, Zheng SL, Walsh PC, Montie JE, Xu J, Carpten JD, Isaacs WB, Cooney KA. Germline mutations in HOXB13 and prostate‐cancer risk. N Engl J Med 2012; 366 ( 2 ): 141 – 149.en_US
dc.identifier.citedreferenceAkbari MR, Trachtenberg J, Lee J, Tam S, Bristow R, Loblaw A, Narod SA, Nam RK. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J Natl Cancer Inst 2012; 104 ( 16 ): 1260 – 1262.en_US
dc.identifier.citedreferenceKarlsson R, Aly M, Clements M, Zheng L, Adolfsson J, Xu J, Gronberg H, Wiklund F. A population‐based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 2014; 65 ( 1 ): 169 – 176.en_US
dc.identifier.citedreferenceBreyer JP, Avritt TG, McReynolds KM, Dupont WD, Smith JR. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2012; 21 ( 8 ): 1348 – 1353.en_US
dc.identifier.citedreferenceChen Z, Greenwood C, Isaacs WB, Foulkes WD, Sun J, Zheng SL, Condreay LD, Xu J. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: Results from the REDUCE trial. Carcinogenesis 2013; 34 ( 6 ): 1260 – 1264.en_US
dc.identifier.citedreferenceLaitinen VH, Wahlfors T, Saaristo L, Rantapero T, Pelttari LM, Kilpivaara O, Laasanen SL, Kallioniemi A, Nevanlinna H, Aaltonen L, Vessella RL, Auvinen A, Visakorpi T, Tammela TL, Schleutker J. HOXB13 G84E mutation in Finland: Population‐based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2013; 22 ( 3 ): 452 – 460.en_US
dc.identifier.citedreferenceStott‐Miller M, Karyadi DM, Smith T, Kwon EM, Kolb S, Stanford JL, Ostrander EA. HOXB13 mutations in a population‐based, case–control study of prostate cancer. Prostate 2013; 73 ( 6 ): 634 – 641.en_US
dc.identifier.citedreferenceXu J, Lange EM, Lu L, Zheng SL, Wang Z, Thibodeau SN, Cannon‐Albright LA, Teerlink CC, Camp NJ, Johnson AM, Zuhlke KA, Stanford JL, Ostrander EA, Wiley KE, Isaacs SD, Walsh PC, Maier C, Luedeke M, Vogel W, Schleutker J, Wahlfors T, Tammela T, Schaid D, McDonnell SK, DeRycke MS, Cancel‐Tassin G, Cussenot O, Wiklund F, Gronberg H, Eeles R, Easton D, Kote‐Jarai Z, Whittemore AS, Hsieh CL, Giles GG, Hopper JL, Severi G, Catalona WJ, Mandal D, Ledet E, Foulkes WD, Hamel N, Mahle L, Moller P, Powell I, Bailey‐Wilson JE, Carpten JD, Seminara D, Cooney KA, Isaacs WB. HOXB13 is a susceptibility gene for prostate cancer: Results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 2013; 132 ( 1 ): 5 – 14.en_US
dc.identifier.citedreferenceLin X, Qu L, Chen Z, Xu C, Ye D, Shao Q, Wang X, Qi J, Zhou F, Wang M, Wang Z, He D, Wu D, Gao X, Yuan J, Wang G, Xu Y, Dong P, Jiao Y, Yang J, Ou‐Yang J, Jiang H, Zhu Y, Ren S, Zhang Z, Yin C, Wu Q, Zheng Y, Turner AR, Tao S, Na R, Ding Q, Lu D, Shi R, Sun J, Liu F, Zheng SL, Mo Z, Sun Y, Xu J. A novel germline mutation in HOXB13 is associated with prostate cancer risk in Chinese men. Prostate 2013; 73 ( 2 ): 169 – 175.en_US
dc.identifier.citedreferenceKluzniak W, Wokolorczyk D, Kashyap A, Jakubowska A, Gronwald J, Huzarski T, Byrski T, Debniak T, Golab A, Gliniewicz B, Sikorski A, Switala J, Borkowski T, Borkowski A, Antczak A, Wojnar L, Przybyla J, Sosnowski M, Malkiewicz B, Zdrojowy R, Sikorska‐Radek P, Matych J, Wilkosz J, Rozanski W, Kis J, Bar K, Bryniarski P, Paradysz A, Jersak K, Niemirowicz J, Slupski P, Jarzemski P, Skrzypczyk M, Dobruch J, Domagala P, Akbari MR, Lubinski J, Narod SA, Cybulski C. The G84E mutation in the HOXB13 gene is associated with an increased risk of prostate cancer in Poland. Prostate 2013; 73 ( 5 ): 542 – 548.en_US
dc.identifier.citedreferenceBeebe‐Dimmer J, Isaacs WB, Zuhlke KA, Yee C, Walsh PC, Isaacs SD, Johnson AM, Ewing CE, Humphreys EB, Chowdhury WH, Montie JE, Cooney KA. The prevalence of the HOXB13 G84E prostate cancer risk allele in men treated with radical prostatectomy. BJU Int 2014; 113 ( 5 ): 830 – 835.en_US
dc.identifier.citedreferenceHaiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA, Rybicki BA, Isaacs WB, Ingles SA, Stanford JL, Diver WR, Witte JS, Hsing AW, Nemesure B, Rebbeck TR, Cooney KA, Xu J, Kibel AS, Hu JJ, John EM, Gueye SM, Watya S, Signorello LB, Hayes RB, Wang Z, Yeboah E, Tettey Y, Cai Q, Kolb S, Ostrander EA, Zeigler‐Johnson C, Yamamura Y, Neslund‐Dudas C, Haslag‐Minoff J, Wu W, Thomas V, Allen GO, Murphy A, Chang BL, Zheng SL, Leske MC, Wu SY, Ray AM, Hennis AJ, Thun MJ, Carpten J, Casey G, Carter EN, Duarte ER, Xia LY, Sheng X, Wan P, Pooler LC, Cheng I, Monroe KR, Schumacher F, Le Marchand L, Kolonel LN, Chanock SJ, Van Den Berg D, Stram DO, Henderson BE. Genome‐wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet 2011; 43 ( 6 ): 570 – 573.en_US
dc.identifier.citedreferenceEeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth‐Little S, Dadaev T, Neal DE, Hamdy FC, Donovan JL, Muir K, Giles GG, Severi G, Wiklund F, Gronberg H, Haiman CA, Schumacher F, Henderson BE, Le Marchand L, Lindstrom S, Kraft P, Hunter DJ, Gapstur S, Chanock SJ, Berndt SI, Albanes D, Andriole G, Schleutker J, Weischer M, Canzian F, Riboli E, Key TJ, Travis RC, Campa D, Ingles SA, John EM, Hayes RB, Pharoah PD, Pashayan N, Khaw KT, Stanford JL, Ostrander EA, Signorello LB, Thibodeau SN, Schaid D, Maier C, Vogel W, Kibel AS, Cybulski C, Lubinski J, Cannon‐Albright L, Brenner H, Park JY, Kaneva R, Batra J, Spurdle AB, Clements JA, Teixeira MR, Dicks E, Lee A, Dunning AM, Baynes C, Conroy D, Maranian MJ, Ahmed S, Govindasami K, Guy M, Wilkinson RA, Sawyer EJ, Morgan A, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As NJ, Woodhouse CJ, Thompson A, Dudderidge T, Ogden C, Cooper CS, Lophatananon A, Cox A, Southey MC, Hopper JL, English DR, Aly M, Adolfsson J, Xu J, Zheng SL, Yeager M, Kaaks R, Diver WR, Gaudet MM, Stern MC, Corral R, Joshi AD, Shahabi A, Wahlfors T, Tammela TL, Auvinen A, Virtamo J, Klarskov P, Nordestgaard BG, Roder MA, Nielsen SF, Bojesen SE, Siddiq A, Fitzgerald LM, Kolb S, Kwon EM, Karyadi DM, Blot WJ, Zheng W, Cai Q, McDonnell SK, Rinckleb AE, Drake B, Colditz G, Wokolorczyk D, Stephenson RA, Teerlink C, Muller H, Rothenbacher D, Sellers TA, Lin HY, Slavov C, Mitev V, Lose F, Srinivasan S, Maia S, Paulo P, Lange E, Cooney KA, Antoniou AC, Vincent D, Bacot F, Tessier DC. Initiative CO‐CRUG‐E, Australian Prostate Cancer B, Oncology UKGPCSCBAoUSSo, Collaborators UKPS, Consortium P, Kote‐Jarai Z, Easton DF. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 2013; 45 ( 4 ): 385 – 391, 391e1–2.en_US
dc.identifier.citedreferenceKan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, Moorhead M, Chaudhuri S, Tomsho LP, Peters BA, Pujara K, Cordes S, Davis DP, Carlton VE, Yuan W, Li L, Wang W, Eigenbrot C, Kaminker JS, Eberhard DA, Waring P, Schuster SC, Modrusan Z, Zhang Z, Stokoe D, de Sauvage FJ, Faham M, Seshagiri S. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466 ( 7308 ): 869 – 873.en_US
dc.identifier.citedreferenceBarbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, Nickerson E, Chae SS, Boysen G, Auclair D, Onofrio RC, Park K, Kitabayashi N, MacDonald TY, Sheikh K, Vuong T, Guiducci C, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Hussain WM, Ramos AH, Winckler W, Redman MC, Ardlie K, Tewari AK, Mosquera JM, Rupp N, Wild PJ, Moch H, Morrissey C, Nelson PS, Kantoff PW, Gabriel SB, Golub TR, Meyerson M, Lander ES, Getz G, Rubin MA, Garraway LA. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44 ( 6 ): 685 – 689.en_US
dc.identifier.citedreferenceBerger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA. The genomic complexity of primary human prostate cancer. Nature 2011; 470 ( 7333 ): 214 – 220.en_US
dc.identifier.citedreferenceLi C, Ao J, Fu J, Lee DF, Xu J, Lonard D, O'Malley BW. Tumor‐suppressor role for the SPOP ubiquitin ligase in signal‐dependent proteolysis of the oncogenic co‐activator SRC‐3/AIB1. Oncogene 2011; 30 ( 42 ): 4350 – 4364.en_US
dc.identifier.citedreferenceLiu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Negre N, Ludwig M, Stricker T, Al‐Ahmadie HA, Tretiakova M, Camp RL, Perera‐Alberto M, Rimm DL, Xu T, Rzhetsky A, White KP. Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 2009; 323 ( 5918 ): 1218 – 1222.en_US
dc.identifier.citedreferenceAn J, Wang C, Deng Y, Yu L, Huang H. Destruction of full‐length androgen receptor by wild‐type SPOP, but not prostate‐cancer‐associated mutants. Cell Reports 2014; 6 ( 4 ): 657 – 669.en_US
dc.identifier.citedreferenceDouglas JA, Zuhlke KA, Beebe‐Dimmer J, Levin AM, Gruber SB, Wood DP, Cooney KA. Identifying susceptibility genes for prostate cancer—A family‐based association study of polymorphisms in CYP17, CYP19, CYP11A1, and LH‐beta. Cancer Epidemiol. Biomarkers Prev 2005; 14 ( 8 ): 2035 – 2039.en_US
dc.identifier.citedreferenceLi H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25 ( 16 ): 2078 – 2079.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.