Show simple item record

Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision‐making

dc.contributor.authorBasu, Niladrien_US
dc.contributor.authorGoodrich, Jaclyn M.en_US
dc.contributor.authorHead, Jessicaen_US
dc.date.accessioned2014-05-23T15:59:29Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-05-23T15:59:29Z
dc.date.issued2014-06en_US
dc.identifier.citationBasu, Niladri; Goodrich, Jaclyn M.; Head, Jessica (2014). "Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision‐making." Environmental Toxicology and Chemistry 33(6): 1248-1258.en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106903
dc.description.abstractThe risk assessment of mercury (Hg), in both humans and wildlife, is made challenging by great variability in exposure and health effects. Although disease risk arises following complex interactions between genetic (“nature”) and environmental (“nurture”) factors, most Hg studies thus far have focused solely on environmental factors. In recent years, ecogenetic‐based studies have emerged and have started to document genetic and epigenetic factors that may indeed influence the toxicokinetics or toxicodynamics of Hg. The present study reviews these studies and discusses their utility in terms of Hg risk assessment, management, and policy and offers perspectives on fruitful areas for future research. In brief, epidemiological studies on populations exposed to inorganic Hg (e.g., dentists and miners) or methylmercury (e.g., fish consumers) are showing that polymorphisms in a number of environmentally responsive genes can explain variations in Hg biomarker values and health outcomes. Studies on mammals (wildlife, humans, rodents) are showing Hg exposures to be related to epigenetic marks such as DNA methylation. Such findings are beginning to increase understanding of the mechanisms of action of Hg, and in doing so they may help identify candidate biomarkers and pinpoint susceptible groups or life stages. Furthermore, they may help refine uncertainty factors and thus lead to more accurate risk assessments and improved decision‐making. Environ Toxicol Chem 2014;33:1248–1258. © 2013 SETACen_US
dc.publisherJohn Wiley & Sonsen_US
dc.subject.otherMercuryen_US
dc.subject.otherReviewen_US
dc.subject.otherRisk Assessmenten_US
dc.subject.otherEpigeneticsen_US
dc.subject.otherGenetic Polymorphismsen_US
dc.titleEcogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision‐makingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106903/1/etc2375.pdf
dc.identifier.doi10.1002/etc.2375en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceFarina M, Aschner M, Rocha JB. 2011. Oxidative stress in methylmercury‐induced neurotoxicity. Toxicol Appl Pharmacol 256: 405 – 417.en_US
dc.identifier.citedreferenceChapman PM, Fairbrother A, Brown D. 1998. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem 17: 99 – 108.en_US
dc.identifier.citedreferenceHightower JM, O'Hare A, Hernandez GT. 2006. Blood mercury reporting in NHANES: Identifying Asian, Pacific Islander, Native American, and multiracial groups. Environ Health Perspect 114: 173 – 175.en_US
dc.identifier.citedreferenceOken E, Kleinman KP, Berland WE, Simon SR, Rich‐Edwards JW, Gillman MW. 2003. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet Gynecol 102: 346 – 351.en_US
dc.identifier.citedreferenceBartell SM, Ponce RA, Sanga RN, Faustman EM. 2000. Human variability in mercury toxicokinetics and steady state biomarker ratios. Environ Res 84: 127 – 132.en_US
dc.identifier.citedreferenceBerglund M, Lind B, Björnberg KA, Palm B, Einarsson Ö, Vahter M. 2005. Inter‐individual variations of human mercury exposure biomarkers: A cross‐sectional assessment. Environ Health 4: 20.en_US
dc.identifier.citedreferenceBudtz‐Jørgensen E, Grandjean P, Jørgensen PJ, Weihe P, Keiding N. 2004. Associations between mercury concentrations in blood and hair in methylmercury‐exposed subjects at different ages. Environ Res 95: 385 – 393.en_US
dc.identifier.citedreferenceBirke G, Johnels AG, Plantin LO, Sjöstrand B, Skerfving S, Westermark T. 1972. Studies on human exposed to methylmercury through fish consumption. Arch Environ Health 25: 71 – 91.en_US
dc.identifier.citedreferenceHursh JB, Cherian MG, Clarkson TW, Vostal JJ, Mallie RV. 1976. Clearance of mercury (Hg‐197, Hg‐203) vapor inhaled by human subjects. Arch Environ Health 31: 302 – 309.en_US
dc.identifier.citedreferenceEkstrand J, Nielsen JB, Havarinasab S, Zalups RK, Soderkvist P, Hultman P. 2009. Mercury toxicokinetics—Dependency on strain and gender. Toxicol Appl Pharmacol 243: 283 – 291.en_US
dc.identifier.citedreferenceDornbos P, Strom S, Basu N. 2013. Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters ( Lontra canadensis ). Ecotoxicology 22: 469 – 475.en_US
dc.identifier.citedreferenceEagles‐Smith CA, Ackerman JT, Adelsbach TL, Takekawa JY, Miles AK, Keister RA. 2008. Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environ Toxicol Chem 27: 2136 – 2153.en_US
dc.identifier.citedreferenceCanuel R, de Grosbois SB, Atikesse L, Lucotte M, Arp P, Ritchie C, Mergler D, Chan HM, Amyot M, Anderson R. 2006. New evidence on variations of human body burden of methylmercury from fish consumption. Environ Health Perspect 114: 302 – 306.en_US
dc.identifier.citedreferenceDorne JL, Walton K, Renwick AG. 2005. Human variability in xenobiotic metabolism and pathway‐related uncertainty factors for chemical risk assessment: A review. Food Chem Toxicol 43: 203 – 216.en_US
dc.identifier.citedreferenceHeinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA. 2009. Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol 56: 129 – 138.en_US
dc.identifier.citedreferenceBasu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW, Dietz R. 2009. Is dietary mercury of neurotoxicological concern to polar bears ( Ursus maritimus ) ? Environ Toxicol Chem 28: 133 – 140.en_US
dc.identifier.citedreferenceHaines KJ, Evans RD, O'Brien M, Evans HE. 2010. Accumulation of mercury and selenium in the brain of river otters ( Lontra canadensis ) and wild mink ( Mustela vison ) from Nova Scotia, Canada. Sci Total Environ 408: 537 – 542.en_US
dc.identifier.citedreferenceScheuhammer AM, Basu N, Burgess NM, Elliott JE, Campbell GD, Wayland M, Champoux L, Rodrigue J. 2008. Relationships among mercury, selenium, and neurochemical parameters in common loons ( Gavia immer ) and bald eagles ( Haliaeetus leucocephalus). Ecotoxicology 17: 93 – 101.en_US
dc.identifier.citedreferenceHead JA, Hahn ME, Kennedy SW. 2008. Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. Environ Sci Technol 42: 7535 – 7541.en_US
dc.identifier.citedreferenceChapman L, Chan HM. 2000. The influence of nutrition on methyl mercury intoxication. Environ Health Perspect 108 (Suppl 1): 29 – 56.en_US
dc.identifier.citedreferenceMead MN. 2007. Nutrigenomics: the genome–food interface. Environ Health Perspect 115: A582 – A589.en_US
dc.identifier.citedreferenceNiculescu MD, Zeisel SH. 2002. Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline. J Nutr 132 (8 Suppl): 2333S – 2335S.en_US
dc.identifier.citedreferenceKardia S. 2006. Gene–environment interaction. In eLS. Joh Wiley & Sons, Chichester, UK [cited 2007 December 21]. Available from: http://www.els.net [DOI: 10.1002/9780470015902.a0005413.pub2 ]en_US
dc.identifier.citedreferenceCosta LG, Eaton DL. 2006. Gene–Environment Interactions: Fundamentals of Ecogenetics. John Wiley & Sons, Hoboken, NJ, USA.en_US
dc.identifier.citedreferenceMotulsky AG. 1968. Genetics and environmental health. Arch Environ Health 16: 75 – 76.en_US
dc.identifier.citedreferenceOmenn GS, Motulsky AG. 1978. Eco‐genetics: Genetic variation in susceptibility to environmental agents. In Ehrman L, Omenn GS, Caspari E, eds, Genetics, Environment and Behavior: Implications for Educational Policy. Academic Press, New York, NY, USA, pp 129 – 179.en_US
dc.identifier.citedreferenceGrandjean P. 1991. Ecogenetics: Genetic Predisposition to Toxic Effects of Chemicals. Chapman & Hall, London, UK.en_US
dc.identifier.citedreferenceHead JA, Dolinoy DC, Basu N. 2012. An introduction to epigenetics for ecotoxicologists. Environ Toxicol Chem 31: 221 – 227.en_US
dc.identifier.citedreferenceOlden K, Wilson S. 2000. Environmental health and genomics: Visions and implications. Nat Rev Genet 1: 149 – 153.en_US
dc.identifier.citedreferenceUS National Research Council. 2000. Toxicological Effects of Methylmercury. National Academy, Washington, DC.en_US
dc.identifier.citedreferenceUS Environmental Protection Agency. 1997. Mercury study report to Congress. EPA 452/R‐97‐003. Final/Technical Report. Washington, DC.en_US
dc.identifier.citedreferenceMergler D, Anderson HA, Chan HM, Mahaffey KR, Murray M, Sakamoto M, Stern AH. 2007. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 36: 3 – 11.en_US
dc.identifier.citedreferenceGrandjean P, Satoh H, Murata K, Eto K. 2010. Adverse effects of methylmercury: Environmental health research implications. Environ Health Perspect 118: 1137 – 1145.en_US
dc.identifier.citedreferenceUS National Research Council. 2009. Science and Decisions: Advancing Risk Assessment. National Academy, Washington, DC.en_US
dc.identifier.citedreferenceZeise L, Bois FY, Chiu WA, Hattis D, Rusyn I, Guyton KZ. 2013. Addressing human variability in next‐generation human health risk assessments of environmental chemicals. Environ Health Perspect 121: 23 – 31.en_US
dc.identifier.citedreferenceWhitfield JB, Dy V, McQuilty R, Zhu G, Heath AC, Montgomery GW, Martin NG. 2010. Genetic effects on toxic and essential elements in humans: Arsenic, cadmium, copper, lead, mercury, selenium, and zinc in erythrocytes. Environ Health Perspect 118: 776 – 782.en_US
dc.identifier.citedreferenceGiraldez MD, Lopez‐Doriga A, Bujanda L, Abuli A, Bessa X, Fernandez‐Rozadilla C, Munoz J, Cuatrecasas M, Jover R, Xicola RM, Llor X, Pique JM, Carracedo A, Ruiz‐Ponte C, Cosme A, Enriquez‐Navascues JM, Moreno V, Andreu M, Castells A, Balaguer F, Castellvi‐Bel S. Gastrointestinal Oncology Group of the Spanish Gastroenterological Association. 2012. Susceptibility genetic variants associated with early‐onset colorectal cancer. Carcinogenesis 33: 613 – 619.en_US
dc.identifier.citedreferenceIngelman‐Sundberg M. 2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol Sci 25: 193 – 200.en_US
dc.identifier.citedreferenceGundacker C, Wittmann KJ, Kukuckova M, Komarnicki G, Hikkel I, Gencik M. 2009. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res 109: 786 – 796.en_US
dc.identifier.citedreferenceSchwartz BS, Lee BK, Lee GS, Stewart WF, Simon D, Kelsey K, Todd AC. 2000. Associations of blood lead, dimercaptosuccinic acid‐chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta]‐aminolevulinic acid dehydratase genes. Environ Health Perspect 108: 949 – 954.en_US
dc.identifier.citedreferenceBreton CV, Zhou W, Kile ML, Houseman EA, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani DC, Breton CV, Zhou W, Kile ML, Houseman EA, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani DC. 2007. Susceptibility to arsenic‐induced skin lesions from polymorphisms in base excision repair genes. Carcinogenesis 28: 1520 – 1525.en_US
dc.identifier.citedreferenceHernandez A, Xamena N, Surralles J, Sekaran C, Tokunga H, Quinteros D, Creus A, Marcos R. 2009. Role of the Met287Thr polymorphism in the AS3MT gene on the metabolic arsenic profile. Mutat Res 637: 80 – 92.en_US
dc.identifier.citedreferenceRicheldi L, Sorrentino R, Saltini C. 1993. HLA‐DPB1 glutamate 69: A genetic marker of beryllium disease. Science 262: 242 – 244.en_US
dc.identifier.citedreferenceRicheldi L, Kreiss K, Mroz MM, Zhen B, Tartoni P, Saltini C. 1997. Interaction of genetic and environmental factors in the prevalence of berylliosis. Am J Indust Med 32: 337 – 340.en_US
dc.identifier.citedreferenceBallatori N, Clarkson TW. 1985. Biliary secretion of glutathione and of glutathione‐metal complexes. Fundam Appl Toxicol 5: 816 – 831.en_US
dc.identifier.citedreferenceGoodrich JM, Basu N. 2012. Variants of glutathione S‐transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals. Toxicol In Vitro 26: 630 – 635.en_US
dc.identifier.citedreferenceBridges CC, Zalups RK. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204: 274 – 308.en_US
dc.identifier.citedreferenceBallatori N, Wang WH, Lieberman MW. 1998. Accelerated methylmercury elimination in gamma‐glutamyl transpeptidase‐deficient mice. Am J Pathol 152: 1049 – 1055.en_US
dc.identifier.citedreferenceCustodio HM, Broberg K, Wennberg M, Jansson JH, Vessby B, Hallmans G, Stegmayr B, Skerfving S. 2004. Polymorphisms in glutatione‐related genes affect methylmercury retention. Arch Environ Health 59: 588 – 595.en_US
dc.identifier.citedreferenceCustodio HM, Harari R, Gerhardsoon L, Skerfving S, Broberg K. 2005. Genetic influences on the retention of inorganic mercury. Arch Environ Occup Health 60: 17 – 23.en_US
dc.identifier.citedreferenceEngstrom KS, Stromberg U, Lundh T, Johannsson I, Vessby B, Hallmans G, Skerfving S, Broberg K. 2008. Genetic variation in glutathione‐related genes and body burden of methylmercury. Environ Health Perspect 116: 734 – 739.en_US
dc.identifier.citedreferenceGoodrich JM, Wang Y, Gillespie B, Werner R, Franzblau A, Basu N. 2011. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicol Appl Pharmacol 257: 301 – 308.en_US
dc.identifier.citedreferenceGundacker C, Komarnick G, Jagiello P, Gencikova A, Dahmen N, Wittmann KJ, Gencik M. 2007. Glutathione S‐transferase polymorphism, metallothionein expression, and mercury levels among students in Austria. Sci Total Environ 385: 37 – 47.en_US
dc.identifier.citedreferenceHarari R, Harari F, Gerhardsson L, Lundh T, Skerfving S, Stromberg U, Broberg K. 2012. Exposure and toxic effects of elemental mercury in gold‐mining activities in Ecuador. Toxicol Lett 213: 75 – 82.en_US
dc.identifier.citedreferenceWang Y, Goodrich JM, Gillespie B, Werner R, Basu N, Franzblau A. 2012. An investigation of modifying effects of metallothionein single nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environ Health Perspect 120: 530 – 534.en_US
dc.identifier.citedreferenceChen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z. 2006. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114: 297 – 301.en_US
dc.identifier.citedreferenceKhan MA, Wang F. 2009. Hg–selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury–selenium antagonism. Environ Toxicol Chem 28: 1567 – 1577.en_US
dc.identifier.citedreferenceSuzuki KT, Sasakura C, Yoneda S. 1998. Binding sites for the (Hg‐Se) complex on selenoprotein P. Biochim Biophys Acta 1429: 102 – 112.en_US
dc.identifier.citedreferenceMeplan C, Crosley LK, Nicol F, Beckett GJ, Howie AF, Hill KE, Horgan G, Mathers JC, Arthur JR, Hesketh JE. 2007. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender‐specific manner (the SELGEN study). FASEB J 21: 3063 – 3074.en_US
dc.identifier.citedreferenceMeplan C, Nicol F, Burtle BT, Crosley LK, Arthur JR, Mathers JC, Hesketh JE. 2009. Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antiox Redox Signal 11: 2631 – 2640.en_US
dc.identifier.citedreferenceJuresa D, Blanusa M, Kostial K. 2005. Simultaneous adminstration of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol Lett 155: 97 – 102.en_US
dc.identifier.citedreferenceMeplan C, Crosley LK, Nicol F, Horgan G, Mathers JC, Arthur JR, Hesketh JE. 2008. Functional effects of a common single‐nucleotide polymorphism (GPx4c718t) in the glutathione peroxidase 4 gene: Interaction with sex. Am J Clin Nutr 87: 1019 – 1027.en_US
dc.identifier.citedreferenceRavn‐Haren G, Olsen A, Tjonneland A, Dragsted LO, Nexo BA, Wallin H, Overvad K, Raaschou‐Nielsen O, Vogel U. 2006. Associations between GPx1 Pro198Leu polymorphism, erythrocyte GPx activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27: 820 – 825.en_US
dc.identifier.citedreferenceEngstrom K, Ameer S, Bernaudat L, Drasch G, Baeuml J, Skerfving S, Bose‐O'Reilly S, Broberg K. 2013. Polymorphisms in genes encoding potential mercury transporters and urine mercury concentrations in populations exposed to mercury vapor from gold mining. Environ Health Perspect 121: 85 – 91.en_US
dc.identifier.citedreferenceWoods JS, Echeverria D, Heyer NJ, Simmonds PL, Wilkerson J, Farin FM. 2005. The association between genetic polymorphisms of coproporphyrinogen oxidase and an atypical porphryinogenic response to mercury exposure in humans. Toxicol Appl Pharmacol 206: 113 – 120.en_US
dc.identifier.citedreferenceEcheverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Bittner AC, Tingting L, Garabedian CE. 2005. Chronic low‐level mercury exposure, BDNF polymorphism, and associations with cognitive and motor function. Neurotoxicol Teratol 27: 781 – 796.en_US
dc.identifier.citedreferenceEcheverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Li T, Garabedian CE. 2006. The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Neurotoxicol Teratol 28: 39 – 48.en_US
dc.identifier.citedreferenceEcheverria D, Woods JS, Heyer NJ, Martin MD, Rohlman DS, Farin FM, Tingting L. 2010. The association between serotonin transporter gene promotor polymorphism (5‐HTTLPR) and elemental mercury exposure on mood and behavior in humans. J Toxicol Environ Health A 73: 1003 – 1020.en_US
dc.identifier.citedreferenceHeyer NJ, Echeverria D, Bittner AC Jr, Farin FM, Garabedian CC, Woods JS. 2004. Chronic low‐level mercury exposure, BDNF polymorphism, and associations with self‐reported symptoms and mood. Toxicol Sci 81: 354 – 363.en_US
dc.identifier.citedreferenceWoods JS, Heyer NJ, Echeverria D, Russo JE, Martin MD, Bernardo MF, Luis HS, Vaz L, Farin FM. 2012. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicol Teratol 34: 513 – 521.en_US
dc.identifier.citedreferenceLee B, Hong Y, Park H, Ha M, Koo BS, Chang N, Roh Y, Kim BN, Kim Y, Kim BM, Jo S, Ha E. 2010. Interaction between GSTM1/GSTT1 polymorphism and blood mercury on birth weight. Environ Health Perspect 118: 437 – 443.en_US
dc.identifier.citedreferenceJacob‐Ferreira AL, Passos CJ, Gerlach RF, Barbosa F Jr, Tanus‐Santos JE. 2010. A functional matrix metalloproteinase (MMP)‐9 polymorphism modifies plasma MMP‐9 levels in subjects environmentally exposed to mercury. Sci Total Environ 408: 4085 – 4092.en_US
dc.identifier.citedreferenceJacob‐Ferreira AL, Lacchini R, Gerlach RF, Passos CJ, Barbosa F Jr, Tanus‐Santos JE. 2011. A common matrix metalloproteinase (MMP)‐2 polymorphism affects plasma MMP‐2 levels in subjects environmentally exposed to mercury. Sci Total Environ 409: 4242 – 4246.en_US
dc.identifier.citedreferencede Marco KC, Antunes LM, Tanus‐Santos JE, Barbosa F Jr. 2012. Intron 4 polymorphism of the endothelial nitric oxide synthase (eNOS) gene is associated with decreased NO production in a mercury‐exposed population. Sci Total Environ 414: 708 – 712.en_US
dc.identifier.citedreferencede Marco KC, Braga GU, Barbosa F. 2011. Determination of the effects of eNOS gene polymorphisms (T‐786C and Glu298Asp) on nitric oxide levels in a methylmercury‐exposed population. J Toxicol Environ Health A 74: 1323 – 1333.en_US
dc.identifier.citedreferenceEngstrom KS, Wennberg M, Stromberg U, Bergdahl IA, Hallmans G, Jansson JH, Lundh T, Norberg M, Rentschler G, Vessby B, Skerfving S, Broberg K. 2011. Evaluation of the impact of genetic polymorphisms in glutathione‐related genes on the association between methylmercury or n‐3 polyunsaturated long chain fatty acids and risk of myocardial infarction: A case‐control study. Environ Health 10: 33.en_US
dc.identifier.citedreferenceHeyer NJ, Echeverria D, Farin FM, Woods JS. 2008. The association between serotonin transporter gene promoter polymorphism (5‐HTTLPR), self‐reported symptoms, and dental mercury exposure. J Toxicol Environ Health A 71: 1318 – 1326.en_US
dc.identifier.citedreferenceHeyer NJ, Echeverria D, Martin MD, Farin FM, Woods JS. 2009. Catechol O‐methyltransferase (COMT) VAL158MET functional polymorphism, dental mercury exposure, and self‐reported symptoms and mood. J Toxicol Environ Health A 72: 599 – 609.en_US
dc.identifier.citedreferenceWang Y, Goodrich JM, Werner R, Gillespie B, Basu N, Franzblau A. 2012. An investigation of modifying effects of single nucleotide polymorphisms in metabolism‐related genes on the relationship between peripheral nerve function and mercury levels in urine and hair. Sci Total Environ 417–418: 32 – 38.en_US
dc.identifier.citedreferenceJirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253 – 262.en_US
dc.identifier.citedreferenceBaccarelli A, Bollati V. 2009. Epigenetics and environmental chemicals. Curr Opin Pediatr 21: 243 – 251.en_US
dc.identifier.citedreferenceCheng TF, Choudhuri S, Muldoon‐Jacobs K. 2012. Epigenetic targets of some toxicologically relevant metals: A review of the literature. J Appl Toxicol 32: 643 – 653.en_US
dc.identifier.citedreferenceOnishchenko N, Karpova NN, Castren E. 2012. Epigenetics of environmental contaminants. In Ceccatelli S, Aschner M, eds, Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity. Springer, New York, NY, USA, pp 199 – 218.en_US
dc.identifier.citedreferenceCeccatelli S, Aschner M. 2012. Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity Series. Springer, New York, NY, USA.en_US
dc.identifier.citedreferenceBasu N. 2012. Piscivorous mammalian wildlife as sentinels of MeHg exposure and neurotoxicity in humans. In Ceccatelli S, Aschner M, eds, Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity. Springer, New York, NY, USA, pp 357 – 370.en_US
dc.identifier.citedreferenceYorifuji T, Tsuda T, Inoue S, Takao S, Harada M. 2011. Long‐term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan. Environ Int 37: 907 – 913.en_US
dc.identifier.citedreferenceJulvez J, Takashi Y, Choi AL, Grandjean P. 2012. Epidemiological evidence on methylmercury neurotoxicity. In Ceccatelli S, Aschner M, eds, Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity. Springer, New York, NY, USA, pp 13 – 35.en_US
dc.identifier.citedreferenceBird AP. 1986. CpG‐rich islands and the function of DNA methylation. Nature 321: 209 – 213.en_US
dc.identifier.citedreferenceSzyf M. 2011. The implications of DNA methylation for toxicology: Toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 120: 235 – 255.en_US
dc.identifier.citedreferencePilsner JR, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R, Basu N. 2010. Mercury‐associated DNA hypomethylation in polar bear brains via the luminometric methylation assay: A sensitive method to study epigenetics in wildlife. Mol Ecol 19: 307 – 314.en_US
dc.identifier.citedreferenceBasu N, Head JA, Nam D‐H, Pilsner JR, Carvan MJ, Chan HM, Goetz FW, Murphy CA, Rouvinen‐Watt K, Scheuhammer AM. 2013. Effects of methylmercury on epigenetic markers in three model species: mink, chicken, and yellow perch. Comp Biochem Physiol C Toxicol 157: 322 – 327.en_US
dc.identifier.citedreferenceBose R, Onishchenko N, Edoff K, Janson Lang AM, Ceccatelli S. 2012. Inherited effects of low‐dose exposure to methylmercury in neural stem cells. Toxicol Sci 130: 383 – 390.en_US
dc.identifier.citedreferenceDesaulniers D, Xiao GH, Lian H, Feng YL, Zhu J, Nakai J, Bowers WJ. 2009. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague‐Dawley rats. Int J Toxicol 28: 294 – 307.en_US
dc.identifier.citedreferenceSantoyo MM, Flores CR, Torres AL, Wrobel K, Wrobel K. 2011. Global DNA methylation in earthworms: A candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments. Environ Pollut 159: 2387 – 2392.en_US
dc.identifier.citedreferenceRobertson KD, Wolffe AP. 2000. DNA methylation in health and disease. Nat Rev Genet 1: 11 – 19.en_US
dc.identifier.citedreferenceOnishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. 2008. Long‐lasting depression‐like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106: 1278 – 1287.en_US
dc.identifier.citedreferenceGadhia SR, Calabro AR, Barile FA. 2012. Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol Lett 212: 169 – 179.en_US
dc.identifier.citedreferenceArai Y, Ohgane J, Yagi S, Ito R, Iwasaki Y, Saito K, Akutsu K, Takatori S, Ishii R, Hayashi R, Izumi S, Sugino N, Kondo F, Horie M, Nakazawa H, Makino T, Shiota K. 2011. Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples. J Reprod Dev 57: 507 – 517.en_US
dc.identifier.citedreferenceHanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY. 2012. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 27: 1401 – 1410.en_US
dc.identifier.citedreferenceGoodrich J, Basu N, Franzblau A, Dolinoy D. 2013. Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 54: 195 – 203.en_US
dc.identifier.citedreferenceClarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36: 609 – 662.en_US
dc.identifier.citedreferenceWaly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power‐Charnitsky VA, Deth RC. 2004. Activation of methionine synthase by insulin‐like growth factor‐1 and dopamine: A target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9: 358 – 70.en_US
dc.identifier.citedreferenceZalups RK, Koropatnick J, Joshee L. 2007. Mouse monocytes (RAW cells) and the handling of cysteine and homocysteine S‐conjugates of inorganic mercury and methylmercury. J Toxicol Environ Health A 70: 799 – 809.en_US
dc.identifier.citedreferenceGallagher CM, Meliker JR. 2011. Total blood mercury, plasma homocysteine, methylmalonic acid and folate in US children aged 3–5 years, NHANES 1999–2004. Sci Total Environ 409: 1399 – 1405.en_US
dc.identifier.citedreferenceSwain EB, Jakus PM, Rice G, Lupi F, Maxson PA, Pacyna JM, Penn A, Spiegel SJ, Veiga MM. 2007. Socioeconomic consequences of mercury use and pollution. Ambio 36: 45 – 61.en_US
dc.identifier.citedreferenceRenwick AG, Lazarus NR. 1998. Human variability and noncancer risk assessment—An analysis of the default uncertainty factor. Regul Toxicol Pharmacol 27: 3 – 20.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.