Show simple item record

Signaling networks in palate development

dc.contributor.authorLane, Jamieen_US
dc.contributor.authorKaartinen, Vesaen_US
dc.date.accessioned2014-05-23T15:59:32Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-05-23T15:59:32Z
dc.date.issued2014-05en_US
dc.identifier.citationLane, Jamie; Kaartinen, Vesa (2014). "Signaling networks in palate development." Wiley Interdisciplinary Reviews: Systems Biology and Medicine 6(3): 271-278.en_US
dc.identifier.issn1939-5094en_US
dc.identifier.issn1939-005Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106914
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.titleSignaling networks in palate developmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106914/1/wsbm1265.pdf
dc.identifier.doi10.1002/wsbm.1265en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Systems Biology and Medicineen_US
dc.identifier.citedreferenceHe F, Xiong W, Wang Y, Li L, Liu C, Yamagami T, Taketo MM, Zhou C, Chen Y. Epithelial Wnt/β‐catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression. Dev Biol 2011, 350: 511 – 519.en_US
dc.identifier.citedreferenceVenza I, Visalli M, Parrillo L, De Felice M, Teti D, Venza M. MSX1 and TGF‐β3 are novel target genes functionally regulated by FOXE1. Hum Mol Genet 2011, 20: 1016 – 1025.en_US
dc.identifier.citedreferenceXu X, Han J, Ito Y, Bringas P Jr, Deng C, Chai Y. Ectodermal Smad4 and p38 MAPK are functionally redundant in mediating TGF‐β/BMP signaling during tooth and palate development. Dev Cell 2008, 15: 322 – 329.en_US
dc.identifier.citedreferenceIwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez‐Lara PA, Urata M, Dixon MJ, Chai Y. Smad4‐Irf6 genetic interaction and TGFβ‐mediated IRF6 signaling cascade are crucial for palatal fusion in mice. Development 2013, 140: 1220 – 1230.en_US
dc.identifier.citedreferenceEmmert‐Streib F, Glazko GV. Network biology: a direct approach to study biological function. Wiley Interdiscip Rev Syst Biol Med 2011, 3: 379 – 391.en_US
dc.identifier.citedreferenceBensimon A, Heck AJ, Aebersold R. Mass spectrometry‐based proteomics and network biology. Annu Rev Biochem 2012, 81: 379 – 405.en_US
dc.identifier.citedreferenceIto Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003, 130: 5269 – 5280.en_US
dc.identifier.citedreferenceChai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000, 127: 1671 – 1679.en_US
dc.identifier.citedreferenceIwata J, Hacia JG, Suzuki A, Sanchez‐Lara PA, Urata M, Chai Y. Modulation of noncanonical TGF‐β signaling prevents cleft palate in Tgfbr2 mutant mice. J Clin Invest 2012, 122: 873 – 885.en_US
dc.identifier.citedreferenceIwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez‐Lara PA, Chai Y. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice. Hum Mol Genet 2013, 23: 182 – 193.en_US
dc.identifier.citedreferenceOzturk F, Li Y, Zhu X, Guda C, Nawshad A. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3‐knockout mice alleles: RNA‐Seq analysis of TGFβ3 Mice. BMC Genomics 2013, 14: 113.en_US
dc.identifier.citedreferenceDoyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008, 135: 749 – 762.en_US
dc.identifier.citedreferenceSanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell‐type‐specific isolation of ribosome‐associated mRNA from complex tissues. Proc Natl Acad Sci U S A 2009, 106: 13939 – 13944.en_US
dc.identifier.citedreferenceDeal RB, Henikoff S. The INTACT method for cell type‐specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 2011, 6: 56 – 68.en_US
dc.identifier.citedreferenceGay L, Miller MR, Ventura PB, Devasthali V, Vue Z, Thompson HL, Temple S, Zong H, Cleary MD, Stankunas K, et al. Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type‐specific nascent RNA. Genes Dev 2013, 27: 98 – 115.en_US
dc.identifier.citedreferenceMurray JC. Gene/environment causes of cleft lip and/or palate. Clin Genet 2002, 61: 248 – 256.en_US
dc.identifier.citedreferenceSchutte BC, Murray JC. The many faces and factors of orofacial clefts. Hum Mol Genet 1999, 8: 1853 – 1859.en_US
dc.identifier.citedreferenceDixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 2011, 12: 167 – 178.en_US
dc.identifier.citedreferenceBush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 2012, 139: 231 – 243.en_US
dc.identifier.citedreferenceGritli‐Linde A. Molecular control of secondary palate development. Dev Biol 2007, 301: 309 – 326.en_US
dc.identifier.citedreferencePelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG. Identification of candidate downstream targets of TGFβ signaling during palate development by genome‐wide transcript profiling. J Cell Biochem 2013, 114: 796 – 807.en_US
dc.identifier.citedreferenceSeelan RS, Mukhopadhyay P, Pisano MM, Greene RM. Developmental epigenetics of the murine secondary palate. ILAR J 2012, 53: 240 – 252.en_US
dc.identifier.citedreferenceMeng L, Bian Z, Torensma R. Von den Hoff JW. Biological mechanisms in palatogenesis and cleft palate. J Dent Res 2009, 88: 22 – 33.en_US
dc.identifier.citedreferenceRice R, Spencer‐Dene B, Connor EC, Gritli‐Linde A, McMahon AP, Dickson C, Thesleff I, Rice DP. Disruption of Fgf10/Fgfr2b‐coordinated epithelial‐mesenchymal interactions causes cleft palate. J Clin Invest 2004, 113: 1692 – 1700.en_US
dc.identifier.citedreferenceLan Y, Jiang R. Sonic hedgehog signaling regulates reciprocal epithelial‐mesenchymal interactions controlling palatal outgrowth. Development 2009, 136: 1387 – 1396.en_US
dc.identifier.citedreferenceEconomou AD, Ohazama A, Porntaveetus T, Sharpe PT, Kondo S, Basson MA, Gritli‐Linde A, Cobourne MT, Green JB. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat Genet 2012, 44: 348 – 351.en_US
dc.identifier.citedreferenceBaek JA, Lan Y, Liu H, Maltby KM, Mishina Y, Jiang R. Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation. Dev Biol 2011, 350: 520 – 531.en_US
dc.identifier.citedreferenceHilliard SA, Yu L, Gu S, Zhang Z, Chen YP. Regional regulation of palatal growth and patterning along the anterior‐posterior axis in mice. J Anat 2005, 207: 655 – 667.en_US
dc.identifier.citedreferenceLi L, Lin M, Wang Y, Cserjesi P, Chen Z, Chen Y. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development. Dev Biol 2011, 349: 451 – 461.en_US
dc.identifier.citedreferenceZhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y. Rescue of cleft palate in Msx1‐deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 2002, 129: 4135 – 4146.en_US
dc.identifier.citedreferenceZhou J, Gao Y, Lan Y, Jia S, Jiang R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 2013, 140: 4709 – 4718.en_US
dc.identifier.citedreferenceHan J, Mayo J, Xu X, Li J, Bringas P Jr, Maas RL, Rubenstein JL, Chai Y. Indirect modulation of Shh signaling by Dlx5 affects the oral‐nasal patterning of palate and rescues cleft palate in Msx1‐null mice. Development 2009, 136: 4225 – 4233.en_US
dc.identifier.citedreferenceLan Y, Ovitt CE, Cho ES, Maltby KM, Wang Q, Jiang R. Odd‐skipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development 2004, 131: 3207 – 3216.en_US
dc.identifier.citedreferenceZhang L, Yoshimura Y, Hatta T, Otani H. Myogenic determination and differentiation of the mouse palatal muscle in relation to the developing mandibular nerve. J Dent Res 1999, 78: 1417 – 1425.en_US
dc.identifier.citedreferenceRot‐Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrimsson B, Hall BK, Kablar B. Myf5−/−: MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol 2006, 216: 1 – 9.en_US
dc.identifier.citedreferenceLi Q, Ding J. Gene expression analysis reveals that formation of the mouse anterior secondary palate involves recruitment of cells from the posterior side. Int J Dev Biol 2007, 51: 167 – 172.en_US
dc.identifier.citedreferenceLiu W, Lan Y, Pauws E, Meester‐Smoor MA, Stanier P, Zwarthoff EC, Jiang R. The Mn1 transcription factor acts upstream of Tbx22 and preferentially regulates posterior palate growth in mice. Development 2008, 135: 3959 – 3968.en_US
dc.identifier.citedreferenceBush JO, Lan Y, Maltby KM, Jiang R. Isolation and developmental expression analysis of Tbx22, the mouse homolog of the human X‐linked cleft palate gene. Dev Dyn 2002, 225: 322 – 326.en_US
dc.identifier.citedreferencePauws E, Hoshino A, Bentley L, Prajapati S, Keller C, Hammond P, Martinez‐Barbera JP, Moore GE, Stanier P. Tbx22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Hum Mol Genet 2009, 18: 4171 – 4179.en_US
dc.identifier.citedreferenceFerguson MW. Palate development: mechanisms and malformations. Ir J Med Sci 1987, 156: 309 – 315.en_US
dc.identifier.citedreferenceWalker BD, Fraser FC. Closure of the secondary palate in three strains of mice. J Embryol Exp Morphol 1956, 4: 176 – 189.en_US
dc.identifier.citedreferenceYu K, Ornitz DM. Histomorphological study of palatal shelf elevation during murine secondary palate formation. Dev Dyn 2011, 240: 1737 – 1744.en_US
dc.identifier.citedreferenceFerguson MW. Palate development. Development 1988, 103 ( Suppl ): 41 – 60.en_US
dc.identifier.citedreferenceIngraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, Malik MI, Dunnwald M, Goudy SL, Lovett M, et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 2006, 38: 1335 – 1340.en_US
dc.identifier.citedreferenceRichardson RJ, Dixon J, Jiang R, Dixon MJ. Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence. Hum Mol Genet 2009, 18: 2632 – 2642.en_US
dc.identifier.citedreferenceVaziri Sani F, Hallberg K, Harfe BD, McMahon AP, Linde A, Gritli‐Linde A. Fate‐mapping of the epithelial seam during palatal fusion rules out epithelial‐mesenchymal transformation. Dev Biol 2005, 285: 490 – 495.en_US
dc.identifier.citedreferenceYoshida M, Shimono Y, Togashi H, Matsuzaki K, Miyoshi J, Mizoguchi A, Komori T, Takai Y. Periderm cells covering palatal shelves have tight junctions and their desquamation reduces the polarity of palatal shelf epithelial cells in palatogenesis. Genes Cells 2012, 17: 455 – 472.en_US
dc.identifier.citedreferenceFunato N, Nakamura M, Richardson JA, Srivastava D, Yanagisawa H. Tbx1 regulates oral epithelial adhesion and palatal development. Hum Mol Genet 2012, 21: 2524 – 2537.en_US
dc.identifier.citedreferenceHumphreys R, Zheng W, Prince LS, Qu X, Brown C, Loomes K, Huppert SS, Baldwin S, Goudy S. Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet 2012, 21: 1374 – 1383.en_US
dc.identifier.citedreferenceCasey LM, Lan Y, Cho ES, Maltby KM, Gridley T, Jiang R. Jag2‐Notch1 signaling regulates oral epithelial differentiation and palate development. Dev Dyn 2006, 235: 1830 – 1844.en_US
dc.identifier.citedreferenceDudas M, Li WY, Kim J, Yang A, Kaartinen V. Palatal fusion ‐ Where do the midline cells go? A review on cleft palate, a major human birth defect. Acta Histochem 2007, 109: 1 – 14.en_US
dc.identifier.citedreferenceXu X, Han J, Ito Y, Bringas P Jr, Urata MM, Chai Y. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Dev Biol 2006, 297: 238 – 248.en_US
dc.identifier.citedreferencePelton RW, Dickinson ME, Moses HL, Hogan BL. In situ hybridization analysis of TGF β3 RNA expression during mouse development: comparative studies with TGF β1 and β2. Development 1990, 110: 609 – 620.en_US
dc.identifier.citedreferenceMillan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF β1, β2 and β3 suggest different developmental functions in vivo. Development 1991, 111: 131 – 143.en_US
dc.identifier.citedreferenceProetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T. Transforming growth factor‐β3 is required for secondary palate fusion. Nat Genet 1995, 11: 409 – 414.en_US
dc.identifier.citedreferenceKaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J. Abnormal lung development and cleft palate in mice lacking TGF‐β3 indicates defects of epithelial‐mesenchymal interaction. Nat Genet 1995, 11: 415 – 421.en_US
dc.identifier.citedreferenceDudas M, Kim J, Li WY, Nagy A, Larsson J, Karlsson S, Chai Y, Kaartinen V. Epithelial and ectomesenchymal role of the type I TGF‐β receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol 2006, 296: 298 – 314.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.