Show simple item record

Interatomic potentials and solvation parameters from protein engineering data for buried residues

dc.contributor.authorLomize, Andrei L.en_US
dc.contributor.authorReibarkh, Mikhail Y.en_US
dc.contributor.authorPogozheva, Irina D.en_US
dc.date.accessioned2014-05-23T15:59:33Z
dc.date.available2014-05-23T15:59:33Z
dc.date.issued2002-08en_US
dc.identifier.citationLomize, Andrei L.; Reibarkh, Mikhail Y.; Pogozheva, Irina D. (2002). "Interatomic potentials and solvation parameters from protein engineering data for buried residues." Protein Science 11(8): 1984-2000. <http://hdl.handle.net/2027.42/106915>en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106915
dc.description.abstractVan der Waals (vdW) interaction energies between different atom types, energies of hydrogen bonds (H‐bonds), and atomic solvation parameters (ASPs) have been derived from the published thermodynamic stabilities of 106 mutants with available crystal structures by use of an originally designed model for the calculation of free‐energy differences. The set of mutants included substitutions of uncharged, inflexible, water‐inaccessible residues in α‐helices and β‐sheets of T4, human, and hen lysozymes and HI ribonuclease. The determined energies of vdW interactions and H‐bonds were smaller than in molecular mechanics and followed the “like dissolves like” rule, as expected in condensed media but not in vacuum. The depths of modified Lennard‐Jones potentials were −0.34, −0.12, and −0.06 kcal/mole for similar atom types (polar–polar, aromatic–aromatic, and aliphatic–aliphatic interactions, respectively) and −0.10, −0.08, −0.06, −0.02, and nearly 0 kcal/mole for different types (sulfur–polar, sulfur–aromatic, sulfur–aliphatic, aliphatic–aromatic, and carbon–polar, respectively), whereas the depths of H‐bond potentials were −1.5 to −1.8 kcal/mole. The obtained solvation parameters, that is, transfer energies from water to the protein interior, were 19, 7, −1, −21, and −66 cal/moleÅ 2 for aliphatic carbon, aromatic carbon, sulfur, nitrogen, and oxygen, respectively, which is close to the cyclohexane scale for aliphatic and aromatic groups but intermediate between octanol and cyclohexane for others. An analysis of additional replacements at the water–protein interface indicates that vdW interactions between protein atoms are reduced when they occur across water.en_US
dc.publisherCold Spring Harbor Laboratory Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherASA, Accessible Surface Areasen_US
dc.subject.otherASP, Atomic Solvation Parameteren_US
dc.subject.otherR.M.S.D., Root Mean Square Deviationen_US
dc.subject.otherPDB, Protein Data Bank, H‐Bond, Hydrogen Bond, BPTI, Bovine Pancreatic Trypsin Inhibitoren_US
dc.subject.otherFree Energyen_US
dc.subject.otherProtein Engineeringen_US
dc.subject.otherSolvationen_US
dc.subject.otherEnergy Functionsen_US
dc.subject.otherProtein Stabilityen_US
dc.subject.otherSecondary Structureen_US
dc.subject.otherProtein Foldingen_US
dc.subject.otherVdW, Van Der Waalsen_US
dc.titleInteratomic potentials and solvation parameters from protein engineering data for buried residuesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCollege of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109‐1065, USAen_US
dc.identifier.pmid12142453en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106915/1/111984_ftp.pdf
dc.identifier.doi10.1110/ps.0307002en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferencePogozheva I.D., Lomize A.L., and Mosberg H.I. 1997. The transmembrane 7–α‐bundle of rhodopsin: Distance geometry calculation with hydrogen bonding constraints. Biophys. J. 72: 1963 – 1985.en_US
dc.identifier.citedreferenceScholtz, J.M., Qian, H., Robbins, V.H., and Baldwin, R.L. 1993. The energetics of ion‐pair and hydrogen‐bonding interactions in a helical peptide. Biochemistry 32: 9668 – 9676.en_US
dc.identifier.citedreferenceSerrano, L., Kellis, J.T., Cann, P., Matouschek, A., and Fersht, A.R 1992. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J. Mol. Biol. 224: 783 – 804.en_US
dc.identifier.citedreferenceShakhnovich, E.I. and Finkelstein, A.V. 1989. Theory of cooperative transitions in protein molecules. I. Why denaturation of globular proteins is a first‐order phase transition. Biopolymers 28: 1667 – 1680.en_US
dc.identifier.citedreferenceShortle, D. 1992. Mutational studies of protein structures and their stabilities. Quart. Rev. Biophys. 25: 205 – 250.en_US
dc.identifier.citedreferenceShortle, D. 1996. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J. 10: 27 – 34.en_US
dc.identifier.citedreferenceSimons, K.T., Strauss, C., and Baker, D. 2001. Prospects for ab initio protein structural genomics. J. Mol. Biol. 306: 1191 – 1199.en_US
dc.identifier.citedreferenceSippl, M.J. 1995. Knowledge‐based potentials for proteins. Curr. Opin. Struct. Biol. 5: 229 – 235.en_US
dc.identifier.citedreferenceStapley, B.J. and Doig, A.J. 1997. Free energies of amino acid side‐chain rotamers in α‐helices, β‐sheets and α‐helix N‐caps. J. Mol. Biol. 272: 456 – 464.en_US
dc.identifier.citedreferenceTakano, K., Ogasahara, K., Kaneda, H., Yamagata, Y., Fujii, S., Kanaya, E., Kikuchi, M., Oobatake, M., and Yutani, K. 1995. Contribution of hydrophobic residues to the stability of human lysozyme—calorimetric studies and X‐ray structural analysis of the 5 isoleucine to valine mutants. J. Mol. Biol. 254: 62 – 75.en_US
dc.identifier.citedreferenceTakano, K., Funahashi, J., Yamagata, Y., Fujii, S., and Yutani, K. 1997a. Contribution of water molecules in the interior of a protein to the conformational stability. J. Mol. Biol. 274: 132 – 142.en_US
dc.identifier.citedreferenceTakano, K., Yamagata, Y., Fujii S., and Yutani, K. 1997b. Contribution of the hydrophobic effect to the stability of human lysozyme: Calorimetric studies and X‐ray structural analyses of the nine Valine to Alanine mutants. Biochemistry 36: 688 – 698.en_US
dc.identifier.citedreferenceTakano, K, Yamagata, Y, Yutani, K. 1998. A general rule for the relationship between hydrophobic effect and conformational stability of a protein: Stability and structure of a series of hydrophobic mutants of human lysozyme. J. Mol. Biol. 280: 749 – 761.en_US
dc.identifier.citedreferenceTakano, K., Ota, M., Ogasahara, K., Yamagata, Y., Nishikawa, K., and Yutani, K. 1999a. Experimental verification of the “stability profile of mutant protein” (SPMP) data using mutant human lysozymes. Protein Eng. 12: 663 – 672.en_US
dc.identifier.citedreferenceTakano, K., Yamagata, Y., Funahashi, J., Hioki, Y., Kuramitsu, S., and Yutani K. 1999b. Contribution of intra‐ and intermolecular hydrogen bonds to the conformational stability of human lysozyme. Biochemistry 38: 12698 – 12708.en_US
dc.identifier.citedreferenceTakano, K., Yamagata, Y., Kubota, M., Funahashi, J., Fujii, S., and Yutani, K. 1999c. Contribution of hydrogen bonds to the conformational stability of human lysozyme: Calorimetry and X‐ray analysis of six Ser −> Ala mutants. Biochemistry 38: 6623 – 6629.en_US
dc.identifier.citedreferenceTakano, K., Yamagata, Y., and Yutani K. 2001. Contribution of polar groups in the interior of a protein to the conformational stability. Biochemistry 40: 4853 – 4858.en_US
dc.identifier.citedreferenceThorson, J.S., Chapman, E., and Schultz, P.G. 1995. Analysis of hydrogen bonding strengths in proteins using unnatural amino acids. J. Am. Chem. Soc. 117: 9361 – 9362.en_US
dc.identifier.citedreferenceTopham, C.M., Srinivasan, N., and Blundell, TL. 1997. Prediction of protein mutants based on structural environment‐dependent amino acid substitution and propensity tables. Protein Eng. 10: 7 – 21.en_US
dc.identifier.citedreferenceTsai, J., Taylor, R., Chothia C., and Gerstein, M. 1999. The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290: 253 – 266.en_US
dc.identifier.citedreferenceVajda, S., Weng, Z., and DeLisi, C. 1995. Extracting hydrophobicity parameters from solute partition and protein mutation/unfolding experiments. Protein Eng. 8: 1081 – 1092.en_US
dc.identifier.citedreferenceVajda, S., Sippl, M., and Novotny J. 1997. Empirical potentials and functions for protein folding and binding. Curr. Opin. Struct. Biol. 7: 222 – 228.en_US
dc.identifier.citedreferenceViguera, A.R. and Serrano, L. 1995. Side‐chain interactions between sulfur‐containing amino‐acid and phenylalanine in α‐helices. Biochemistry 34: 8771 – 8779.en_US
dc.identifier.citedreferenceWang, J., Wang, W., Huo, S., Lee, M., and Kollman, P.A. 2001. Solvation model based on weighted solvent accessible surface area. J. Phys. Chem. B. 105: 5055 – 5067.en_US
dc.identifier.citedreferenceWarshel, A. and Papazyan, A. 1998. Electrostatic effects in macromolecules: Fundamental concepts and practical modeling. Curr. Opin. Struct. Biol. 8: 211 – 217.en_US
dc.identifier.citedreferenceWood, R.H. and Thompson, P.T. 1990. Differences between pair and bulk hydrophobic interactions. Proc. Natl. Acad. Sci. USA 87: 946 – 949.en_US
dc.identifier.citedreferenceWray, J.W., Baase, W.A., Lindstrom, J.D., Weaver, L.H., Poteete, A.R., and Matthews, B.W. 1999. Structural analysis of a non‐contiguous second‐site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. J. Mol. Biol. 292: 1111 – 1120.en_US
dc.identifier.citedreferenceXu, J., Baase, W.A., Baldwin, E., and Matthews, B.W. 1998. The response of T4 lysozyme to large‐to‐small substitutions within the core and its relation to the hydrophobic effect. Protein Sci. 7: 158 – 177.en_US
dc.identifier.citedreferenceXu, J., Baase, W.A., Quillin, M.L., Baldwin, E.P., and Matthews, B.W. 2001. Structural and thermodynamic analysis of the binding of solvent at internal sites in T4 lysozyme. Protein Sci. 10: 1067 – 1078.en_US
dc.identifier.citedreferenceYamagata, Y., Kubota, M., Sumikawa, Y., Funahashi, J., Takano, K., Fujii, S., and Yutani K. 1998. Contribution of hydrogen bonds to the conformational stability of human lysozyme: Calorimetry and X‐ray analysis of six tyrosine −> phenylalanine mutants. Biochemistry 37: 9355 – 9362.en_US
dc.identifier.citedreferenceYue K. and Dill K. 1996. Folding proteins with a simple energy function and extensive conformational searching. Protein Sci. 5: 254 – 261.en_US
dc.identifier.citedreferenceAbraham, M.H., Chadha, H.S., Whiting, G.S., and Mitchell, R.C. 1994. Hydrogen bonding. 32. An analysis of water‐octanol and water‐alkane partitioning and the ΔlogP parameter of Seiler. J. Pharm. Sci. 83: 1085 – 1100.en_US
dc.identifier.citedreferenceAnderson, D.E., Hurley, J.H., Nicholson, H., Baase, W.A., and Matthews, B.W. 1993. Hydrophobic core repacking and aromatic‐aromatic interaction in the thermostable mutant of T4 lysozyme Ser 117 −> Phe. Protein Sci. 2: 1285 – 1290.en_US
dc.identifier.citedreferenceAnderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Geenbaum, A., Hammarling, S., McKenney, A. et al. 1999. LAPACK users guide, 3rd ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.en_US
dc.identifier.citedreferenceArai, M. and Kuwajima, K. 2000. Role of the molten globule state in protein folding. Adv. Protein Chem. 53: 209 – 282.en_US
dc.identifier.citedreferenceBaldwin, E.P., Hajiseyedjavadi, O., Baase, W.A., and Matthews, B.W. 1993. The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science 262: 1715 – 1718.en_US
dc.identifier.citedreferenceBaldwin, E.P., Hajiseyedjavadi, O., Baase, W.A., and Matthews, B.W. 1996. Thermodynamic and structural compensation in “size‐switch” core repacking variants of bacteriophage T4 lysozyme. J. Mol. Biol. 259: 542 – 559.en_US
dc.identifier.citedreferenceBaldwin, R.L. 1986. Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. 83: 8069 – 8072.en_US
dc.identifier.citedreferenceBaldwin, R.L. 1989. How does protein folding get started? Trends Biochem. Sci. 14: 291 – 294.en_US
dc.identifier.citedreferenceBello, J. 1978. Tight packing of protein cores and interfaces. Int. J. Pept. Protein Res. 12: 38 – 41.en_US
dc.identifier.citedreferenceBlaber, M., Lindstrom, J.D., Gassner, N., Xu, J., Dirk, W.H., and Matthews, B.W. 1993. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala‐Ser and Val‐Thr substitutions in T4 lysozyme. Biochemistry 32: 11363 – 11373.en_US
dc.identifier.citedreferenceBlaber, M., Zhang, X.‐J., Lindstrom, J.D., Pepiot S.D., Baase, W.A., and Matthews B.W. 1994. Determination of α‐helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J. Mol. Biol. 235: 600 – 624.en_US
dc.identifier.citedreferenceBlaber, M., Baase, W.A., Gassner, N., and Matthews, B.W. 1995. Alanine scanning mutagenesis of the alpha‐helix 115–123 of phage T4 lysozyme—effects on structure, stability and the binding of solvent. J. Mol. Biol. 246: 317 – 330.en_US
dc.identifier.citedreferenceBoresch, S. and Karplus, M. 1995. The meaning of component analysis: Decomposition of the free energy in terms of specific interactions. J. Mol. Biol. 254: 801 – 807.en_US
dc.identifier.citedreferenceBrady, G.P. and Sharp, K.A. 1995. Decomposition of interaction free energies in proteins and other complex systems. J. Mol. Biol. 254: 77 – 85.en_US
dc.identifier.citedreferenceBrady, G.P. and Sharp, K.A. 1997. Entropy in protein folding and in protein‐protein interactions. Curr. Opin. Struct. Biol. 7: 215 – 221.en_US
dc.identifier.citedreferenceCarter, C.W., LeFebvre, B.C., Cammer, S.A., Tropsha, A., and Edgell, M.H. 2001. Four‐body potentials reveal protein‐specific correlations to stability changes caused by hydrophobic core mutations. J. Mol. Biol. 311: 625 – 638.en_US
dc.identifier.citedreferenceChakrabartty, A. and Baldwin, R.L. 1995. Stability of α‐helices. Adv. Protein Chem. 46: 141 – 176.en_US
dc.identifier.citedreferenceChothia, C. 1975. Structural invariants in protein folding. Nature 254: 304 – 308.en_US
dc.identifier.citedreferenceCooper, A. 2000. Heat capacity of hydrogen‐bonding networks: An alternative view of protein folding thermodynamics. Biophys. Chem. 85: 25 – 39.en_US
dc.identifier.citedreferenceCreamer, T.P. 2000. Side‐chain conformational entropy in protein unfolded states. Proteins Struct. Funct. Genet. 40: 443 – 450.en_US
dc.identifier.citedreferenceCreamer, T.P., Srinivasan, R., and Rose, G.D. 1995. Modeling unfolded states of peptides and proteins. Biochemistry 34: 16245 – 16250.en_US
dc.identifier.citedreferenceCreamer, T.P., Srinivasan, R., and Rose, G.D. 1997. Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility. Biochemistry 34: 2832 – 2835.en_US
dc.identifier.citedreferenceDao‐Pin, S., Alber, T., Baase, W.A., Wozniak, J.A., and Matthews, B.W. 1991. Structural and thermodynamic analysis of the packing of two alpha‐helices in bacteriophage T4 lysozyme. J. Mol. Biol. 221: 647 – 667.en_US
dc.identifier.citedreferenceDe la Paz, M.L., Lacroix, E., Ramirez‐Alvarado, M., and Serrano, L. 2001. Computer‐aided design of β‐sheet peptides. J. Mol. Biol. 312: 229 – 246.en_US
dc.identifier.citedreferenceDunitz, J.D. 1994. The entropic cost of bound water in crystals and biomolecules. Science 264: 670.en_US
dc.identifier.citedreferenceDunitz, J.D. and Gavezzotti, A. 1999. Attractions and repulsions in molecular crystals: What can be learned from the crystal structures of condensed ring aromatic hydrocarbons? Acc. Chem. Res. 32: 677 – 684.en_US
dc.identifier.citedreferenceDwyer, J.J., Gittis A.G., Karp, D.A., Lattman, E.E., Spencer, D.S., Stites, W.E., and Garcia‐Moreno, B.E. 2000. High apparent dielectric constants in the interior of a protein reflect water penetration. Biophys. J. 79: 1610 – 1620.en_US
dc.identifier.citedreferenceEfremov, R.G., Nolde, D.E., Vergoten, G., and Arseniev, A.S. 1999. A solvent model for simulations of peptides in bilayers. I. Membrane‐promoting α‐helix formation. Biophys. J. 76: 2448 – 2459.en_US
dc.identifier.citedreferenceEisenberg, D. and McLachlan, A.D. 1986. Solvation energy in protein folding and binding. Nature 319: 199 – 203.en_US
dc.identifier.citedreferenceEldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., and Mee, R.P. 1997. Empirical score functions: I. The development of a fast empirical score function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11: 425 – 445.en_US
dc.identifier.citedreferenceEriksson, A.E., Baase, W.A., Zhang, X.J., Heinz, D.W., Blaber, M., Baldwin, E.P., and Matthews, B.W. 1992. Response of a protein structure to cavity‐creating mutations and its relation to the hydrophobic effect. Science 255: 178 – 183.en_US
dc.identifier.citedreferenceEriksson, A.E., Baase, W.A., and Matthews, B.W. 1993. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4‐lysozyme have different structural and thermodynamic consequences. J. Mol. Biol. 229: 747 – 769.en_US
dc.identifier.citedreferenceEwig, C.S., Thacher, T.S., and Hagler, A.H. 1999. Derivation of class II force fields. 7. Nonbonded force field parameters for organic compounds. J. Phys. Chem. B. 103: 6998 – 7014.en_US
dc.identifier.citedreferenceFaber, H.R. and Matthews, B.W. 1990. A mutant T4 lysozyme displays 5 different crystal conformations. Nature 348: 263 – 266.en_US
dc.identifier.citedreferenceFersht, A.R. 1999. Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding. W.H. Freeman, NY.en_US
dc.identifier.citedreferenceFersht, A.R. and Serrano, L. 1993. Principles of protein stability derived from protein engineering experiments. Curr. Opin. Struct. Biol. 3: 75 – 83.en_US
dc.identifier.citedreferenceFunahashi, J., Takano K., Yamagata Y., and Yutani K. 1999. Contribution of amino acid substitutions at two different interior positions to the conformational stability of human lysozyme. Protein Eng. 12: 841 – 850.en_US
dc.identifier.citedreferenceFunahashi, J., Takano, K., and Yutani, K. 2001. Are the parameters of various stabilization factors estimated from mutant human lysozymes compatible with other proteins? Protein Eng. 14: 127 – 134.en_US
dc.identifier.citedreferenceGassner, N.C., Baase, W.A., Lindstrom, J.D., Lu, J.R., Dahlquist, F.W., and Matthews, B.W. 1999. Methionine and alanine substitutions show that the formation of wild‐type‐like structure in the carboxy‐terminal domain of T4 lysozyme is a rate‐limiting step in folding. Biochemistry 38: 14451 – 14460.en_US
dc.identifier.citedreferenceGavezzotti, A. and Filippini, G. 1994. Geometry of the intermolecular X‐H … Y (X, Y = N,O) hydrogen bond and the calibration of empirical hydrogen‐bond potentials. J. Phys. Chem. 98: 4831 – 4837.en_US
dc.identifier.citedreferenceGavezzotti, A. and Filippini, G. 1997. Energetic aspects of crystal packing: Experiment and computer simulations. In: Theoretical aspects and computer modeling. The molecular solid state. (ed. A. Gavezzotti ),Vol. 1, pp. 62 – 97. John Wiley & Sons Ltd.en_US
dc.identifier.citedreferenceGilis, D. and Rooman, M. 1996. Stability changes upon mutation of solvent‐accessible residues in proteins evaluated by database‐derived potentials. J. Mol. Biol. 257: 1112 – 1126.en_US
dc.identifier.citedreferenceGilis, D. and Rooman, M. 1997. Predicting protein stability changes upon mutation using database‐derived potentials: Solvent accessibility determines the importance of local versus non‐local interactions along the sequence. J. Mol. Biol. 272: 276 – 290.en_US
dc.identifier.citedreferenceGohlke, H. and Klebe, G. 2001. Statistical potentials and scoring functions applied to protein‐ligand binding. Curr. Opin. Struct. Biol. 11: 231 – 235.en_US
dc.identifier.citedreferenceGordon, D.B., Marshall, S.A., and Mayo, S.L. 1999. Energy functions for protein design. Curr. Opin. Struct. Biol. 9: 509 – 513.en_US
dc.identifier.citedreferenceGraziano, G., Catanzano, F., Del Vecchio, P., Giancola, C., and Barone, G. 1996. Thermodynamic stability of globular proteins: A reliable model from small molecule studies. Gaz. Chim. Ital. 126: 559 – 567.en_US
dc.identifier.citedreferenceGuardado, P., Balon, M., Carmona, C., Munoz, M.A., and Domene, C. 1997. Partition coefficients of indoles and betacarbolines. J. Pharm. Sci. 86: 106 – 109.en_US
dc.identifier.citedreferenceHalgren, T.A. 1995. Potential energy functions. Curr. Opin. Struct. Biol. 5: 205 – 210.en_US
dc.identifier.citedreferenceHao, M.‐H. and Scheraga, H.A. 1999. Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 9: 184 – 188.en_US
dc.identifier.citedreferenceHermans J., Berendsen, H.J.C., VanGunsteren, W.F., and Postma, J.P.M. 1984. A consistent empirical potential for water‐protein interactions. Biopolymers 23: 1513 – 1518.en_US
dc.identifier.citedreferenceHerzfeld, J. 1991. Understanding hydrophobic behavior. Science 253: 88.en_US
dc.identifier.citedreferenceHorovitz, A., Matthews, J.M., and Fersht, A.R. 1992. α‐Helix stability in proteins. 2. Factors that influence stability at an internal position. J. Mol. Biol. 227: 560 – 568.en_US
dc.identifier.citedreferenceHubbard, S.J. and Thornton, J.M. 1993. “NACCESS,” computer program, Department of Biochemistry and Molecular Biology, University College London.en_US
dc.identifier.citedreferenceHurley, J.H., Baase, W.A., and Matthews, B.W. 1992. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J. Mol. Biol. 224: 1143 – 1159.en_US
dc.identifier.citedreferenceIshikawa, K., Nakamura, H., Morikawa, K., and Kanaya, S. 1993a. Stabilization of Escherichia coli ribonuclease HI by cavity‐filling mutations within a hydrophobic core. Biochemistry 32: 6171 – 6178.en_US
dc.identifier.citedreferenceIshikawa K., Nakamura H., Morikawa K., Kimura S., and Kanaya S. 1993b. Cooperative stabilization of Escherichia coli ribonuclease HI by insertion of Gly‐80B and Gly‐77‐Ala substitution. Biochemistry 32: 7136 – 7142.en_US
dc.identifier.citedreferenceIsraelachvili, J.N. 1992. Intermolecular and surface forces. Academic Press, San Diego.en_US
dc.identifier.citedreferenceJackson, S.E., Moracci, M., elMastry, N., Johnson, C.M., and Fersht, AR. 1993. Effect of cavity‐creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry 32: 11259 – 11269.en_US
dc.identifier.citedreferenceJorgensen, W.L., Maxwell, D.S., and Tirado‐Rives, J. 1996. Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118: 11225 – 11236.en_US
dc.identifier.citedreferenceJuffer, A.H., Eisenhaber, F., Hubbard, S.J., Walter, D., and Argos, P. 1995. Comparison of atomic solvation parametric sets: Applicability and limitations in protein folding and binding. Protein Sci. 4: 2499 – 2509.en_US
dc.identifier.citedreferenceKellis, J.T., Nyberg, K., and Fersht, A.R. 1989. Energetics of complementary side‐chain packing in a protein hydrophobic core. Biochemistry 28: 4914 – 4922.en_US
dc.identifier.citedreferenceKim, K.S., Tao, F., Fuchs, J., Danishefsky, A.T., Housset, D., Wlodawer, A., and Woodward, C. 1993. Crevice‐forming mutants of bovine pancreatic trypsin inhibitor: Stability changes and new hydrophobic surface. Protein Sci. 2: 588 – 596.en_US
dc.identifier.citedreferenceKoehl, P. and Levitt, M. 1999. De novo protein design. I. In search of stability and specificity. J. Mol. Biol. 293: 1161 – 1181.en_US
dc.identifier.citedreferenceKollman, P. 1993. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 93: 2395 – 2417.en_US
dc.identifier.citedreferenceLazaridis, T., Archontis, G., and Karplus, M. 1995. Enthalpic contribution to protein stability: Insights from atom‐based calculations and statistical mechanics. Adv. Protein Chem. 47: 231 – 307.en_US
dc.identifier.citedreferenceLazaridis, T. and Karplus, M. 2000. Effective energy functions for protein structure predictions. Curr. Opin. Struct. Biol. 10: 139 – 145.en_US
dc.identifier.citedreferenceLeckband, D. and Israelachvili, J. 2001. Intermolecular forces in biology. Q. Rev. Biophys. 34: 105 – 267.en_US
dc.identifier.citedreferenceLee, K.H., Xie, D., Freire, E., and Amzel, L.M. 1994. Estimation of changes in side chain configurational entropy in binding and folding: General methods and application to helix formation. Proteins Struct. Funct. Genet. 20: 68 – 84.en_US
dc.identifier.citedreferenceLipscomb, L.A., Gassner, N.C., Snow, S.D., Eldridge, A.M., Baase, W.A., Drew, D.L., and Matthews, B.W. 1998. Context‐dependent protein stabilization by methionine‐to‐leucine substitution shown in T4 lysozyme. Protein Sci. 7: 765 – 773.en_US
dc.identifier.citedreferenceLiu, R., Baase, W.A., and Matthews, B.W. 2000. The introduction of strain and its effects on the structure and stability of T4 lysozyme. J. Mol. Biol. 295: 127 – 145.en_US
dc.identifier.citedreferenceLomize, A.L. and Mosberg, H.I. 1997. Thermodynamic model of secondary structure for α‐helical peptides and proteins. Biopolymers 42: 239 – 269.en_US
dc.identifier.citedreferenceLomize, A.L., Pogozheva, I.D., and Mosberg H.I. 1999a. Prediction of protein structure: The problem of fold multiplicity. multiplicity 3 (Suppl.): 199 – 203.en_US
dc.identifier.citedreferenceLomize, A.L., Pogozheva, I.D., and Mosberg H.I. 1999b. Structural organization of G protein‐coupled receptors. J. Comput Aided Mol. Des. 13: 1 – 29.en_US
dc.identifier.citedreferenceLuque, I. and Freire, E. 1998. Structure‐based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol. 295: 100 – 127.en_US
dc.identifier.citedreferenceLyu P.C., Liff M.I., Marky L.A., and Kallenbach N. 1990. Side chain contributions to the stability of alpha‐helical structure in peptides. Science 250: 669 – 673.en_US
dc.identifier.citedreferenceMakhatadze, G.I. and Privalov, P.L. 1994. Energetics of interactions of aromatic hydrocarbons with water. Biophys. Chem. 50: 285 – 291.en_US
dc.identifier.citedreferenceMakhatadze, G.I. and Privalov, P.L. 1995. Energetics of protein structure. Adv. Protein Chem. 47: 307 – 425.en_US
dc.identifier.citedreferenceMark, A.E. and van Gunsteren, W.F. 1994. Decomposition of the free energy in terms of specific interactions. Implications for theoretical and experimental studies. J. Mol. Biol. 240: 167 – 176.en_US
dc.identifier.citedreferenceMatsumura, M., Becktel, W.J., and Matthews, B.W. 1988. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile‐3. Nature 334: 406 – 410.en_US
dc.identifier.citedreferenceMatthews, B.W. 1993. Structural and genetic analysis of protein stability. Ann. Rev. Biochem. 62: 139 – 160.en_US
dc.identifier.citedreferenceMatthews, B.W. 1995a. Can protein structure be turned inside‐out? Nat. Struct. Biol. 2: 85 – 86.en_US
dc.identifier.citedreferenceMatthews, B.W. 1995b. Studies on protein stability with T4 lysozyme. Adv. Protein Chem. 46: 249 – 278.en_US
dc.identifier.citedreferenceMatthews, B.W. 1996. Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J. 10: 35 – 41.en_US
dc.identifier.citedreferenceMcDonald, I.K.M. and Thornton, J.M. 1994. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238: 777 – 793.en_US
dc.identifier.citedreferenceMcLachlan, A.D. 1963. Three‐body dispersion forces. Mol. Phys. 6: 423 – 427.en_US
dc.identifier.citedreferenceMiller, K.J. 1990. Additivity methods in molecular polarizability. J. Am. Chem. Soc. 112: 8533 – 8542.en_US
dc.identifier.citedreferenceMinor, D.L. and Kim, P.S. 1994a. Measurement of the β‐sheet‐forming propensities of amino acids. Nature 367: 660 – 663.en_US
dc.identifier.citedreferenceMinor, D.L. and Kim, P.S. 1994b. Context is the major determinant of β‐sheet propensity. Nature 371: 264 – 267.en_US
dc.identifier.citedreferenceMiyazawa, S. and Jernigan, R.L. 1994. Protein stability for single substitution mutants and the extent of local compactness in the denatured state. Protein Eng. 7: 1209 – 1220.en_US
dc.identifier.citedreferenceMomany, F.A., Carruthers, L.M., McGuire, R.F., and Scheraga, H.A. 1974. Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys. Chem. 78: 1595 – 1620.en_US
dc.identifier.citedreferenceMomany, F.A., McGuire, R.F., Burgess, A.W., and Scheraga, H.A. 1975. Energy parameters in polypeptides. VII Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79: 2361 – 2381.en_US
dc.identifier.citedreferenceMorris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Bellew, R.K., and Olson, A.J. 1998. Automated docking using a Lamarkian generic algorithm and an empirical binding energy function. J. Comput. Chem. 19: 1639 – 1662.en_US
dc.identifier.citedreferenceMyers, J.K. and Pace, C.N. 1996. Hydrogen bonding stabilizes globular proteins. Biophys. J. 71: 2033 – 2039.en_US
dc.identifier.citedreferenceNemethy, G., Pottle, M.S., and Scheraga H.A. 1983. Parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J. Phys. Chem. 87: 1881 – 1887.en_US
dc.identifier.citedreferenceNicholls, A., Sharp, K.A., and Honig, B. 1991. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11: 281 – 296.en_US
dc.identifier.citedreferenceOhmura T., Ueda T., Ootsuka K., Saito M., and Imoto, T. 2001. Stabilization of hen egg white lysozyme by a cavity‐filling mutation. Protein Sci. 10: 313 – 320.en_US
dc.identifier.citedreferenceO'Neil, K.T. and DeGrado, W.F. 1990. A thermodynamic scale for the helix‐forming tendencies of the commonly occurring amino acids. Science 250: 646 – 651.en_US
dc.identifier.citedreferenceOoi, T., Oobatake, M., Nemethy, G., and Scheraga, H.A. 1987. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. 84: 3086 – 3090.en_US
dc.identifier.citedreferencePace, C.N. 1992. Contribution of the hydrophobic effect to globular protein stability. J. Mol. Biol. 226: 29 – 35.en_US
dc.identifier.citedreferencePace, C.N. 2001. Polar group burial contributes more to protein stability than nonpolar group burial. Biochemistry 40: 310 – 313.en_US
dc.identifier.citedreferencePace, C.N., Shirley, B.A., McNutt, M., and Gajiwala, K. 1996. Forces contributing to the conformational stability of proteins. FASEB J. 10: 75 – 83.en_US
dc.identifier.citedreferencePark, S.H., Shalongo, W., and Stellwagen. 1993. Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry 32: 7048 – 7053.en_US
dc.identifier.citedreferencePark, B.H., Huang, E.S., and Levitt, M. 1997. Factors affecting the ability of energy functions to discriminate correct from incorrect folds. J. Mol. Biol. 266: 831 – 846.en_US
dc.identifier.citedreferencePickett, S.D. and Sternberg, M.J. 1993. Empirical scale of side‐chain conformational entropy in protein folding. J. Mol. Biol. 231: 825 – 839.en_US
dc.identifier.citedreferencePjura, P., Mcintosh, L.P., Wozniak, J.A., and Matthews, B.W. 1993. Perturbation of Trp‐138 in T4 lysozyme by mutations at Gln‐105 used to correlate changes in structure, stability, solvation, and spectroscopic properties. Proteins Struct. Funct. Genet. 15: 401 – 412.en_US
dc.identifier.citedreferencePlaxco, K.W. and Gross, M. 2001. Unfolded, yes, but random? Never!. Nat. Struct. Biol. 8: 659 – 660.en_US
dc.identifier.citedreferenceRadzicka, A. and Wolfenden, R. 1988. Comparing the polarities of the amino acids: Side‐chain distribution coefficients between the vapor phase, cyclohexane, 1‐octanol, and neutral aqueous solution. Biochemistry 27: 1664 – 1670.en_US
dc.identifier.citedreferenceRatnaparkhi, G.S. and Varadarajan, R. 2000. Thermodynamic and structural studies of cavity formation in proteins suggest that loss of packing interactions rather than the hydrophobic effect dominates the observed energetics. Biochemistry 39: 12365 – 12374.en_US
dc.identifier.citedreferenceReddy, B.V.B., Datta, S., and Tiwari, S. 1998. Use of propensities of amino acids to the local structural environments to understand effect of substitution mutations on protein stability. Protein Eng. 11: 1137 – 1145.en_US
dc.identifier.citedreferenceRees, D.C. and Robertson, A.D. 2001. Some thermodynamic implications for the thermostability of proteins. Protein Sci. 10: 1187 – 1194.en_US
dc.identifier.citedreferenceRichards, F.M. 1977. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6: 151 – 176.en_US
dc.identifier.citedreferenceRobertson, A.D. and Murphy, K.P. 1997. Protein structure and energetics of protein stability. Chem. Rev. 97: 1251 – 1267.en_US
dc.identifier.citedreferenceRose, G.D. and Wolfenden, R. 1993. Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu. Rev. Biophys. Biomol. Struct. 22: 381 – 415.en_US
dc.identifier.citedreferenceRoux, B. and Simonson, T. 1999. Implicit solvation models. Biophys. Chem. 78: 1 – 20.en_US
dc.identifier.citedreferenceSamudrala, R. and Moult, J. 1998. An all‐atom distance‐dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275: 895 – 916.en_US
dc.identifier.citedreferenceScholtz, J.M., Marqusee, S., Baldwin, R.L., York, E.J., Stewart, J.M., Santoro, M., and Bolen, D.W. 1991. Calorimetric determination of the enthalpy change for the α‐helix to coil transition of an alanine peptide in water. Proc. Natl. Acad. Sci. 88: 2854 – 2858.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.