Show simple item record

Detailed modeling and analysis of spacecraft plume/ionosphere interactions in low Earth orbit

dc.contributor.authorStephani, K. A.en_US
dc.contributor.authorBoyd, I. D.en_US
dc.date.accessioned2014-05-23T15:59:38Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationStephani, K. A.; Boyd, I. D. (2014). "Detailed modeling and analysis of spacecraft plume/ionosphere interactions in low Earth orbit." Journal of Geophysical Research: Space Physics 119(3): 2101-2116.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106930
dc.description.abstractDetailed direct simulation Monte Carlo/particle‐in‐cell simulations involving the interaction of spacecraft thruster plumes with the rarefied ambient ionosphere are presented for steady thruster firings in low Earth orbit (LEO). A nominal mass flow rate is used to prescribe the rocket exit conditions of a neutral propellant species for use in the simulations. The charge exchange interactions of the steady plume with the rarefied ionosphere are modeled using a direct simulation Monte Carlo/particle‐in‐cell methodology, allowing for a detailed assessment of nonequilibrium collisional and plasma‐related phenomena relevant for these conditions. Results are presented for both ram‐ and wake‐flow configurations, in which the thrusters are firing into (ram) or in the direction of (wake) the free stream ionosphere flow in LEO. The influence of the Earth's magnetic field on the development of the ion plume is also examined for three different field strengths: two limiting cases in which B →0 and B → ∞ , and the LEO case in which B =0.5 Gs. The magnetic field is found to have a substantial impact on the resulting neutral and ion plumes, and the gyroscopic motion of the magnetized ions results in a broadening of the ion energy distribution functions. The magnetic field model also incorporates a cross‐field diffusion mechanism which is shown to increase the current density sampled far from the thruster. Key Points Particle‐based model for plume/ionosphere interactions Charge‐exchange reactions modeled using detailed DCS/TCS data B ‐field has a strong influence on the development of plumesen_US
dc.publisherOxford Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPlumesen_US
dc.subject.otherDSMC/PICen_US
dc.subject.otherIonosphereen_US
dc.subject.otherLow Earth Orbiten_US
dc.subject.otherCharge‐Exchangeen_US
dc.subject.otherRarefied Flowsen_US
dc.titleDetailed modeling and analysis of spacecraft plume/ionosphere interactions in low Earth orbiten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106930/1/jgra50833.pdf
dc.identifier.doi10.1002/2013JA019222en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLi, X., Y. ‐L. Huang, G. Flesch, and C. Ng ( 1995 ), Absolute total cross sections for the ion‐molecule reaction O ( + )(( 4 ) S ( 0 ))+ H ( 2 ) O, J. Chem. Phys., 102 ( 12 ), 5100 – 5101.en_US
dc.identifier.citedreferenceBernhardt, P., et al. ( 2012 ), Ground and space‐based measurement of rocket engine burns in the ionosphere, IEEE Trans. Plasma Sci., 40 ( 5 ), 1267 – 1286.en_US
dc.identifier.citedreferenceBird, G. ( 1994 ), Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Univ. Press, Oxford, U. K.en_US
dc.identifier.citedreferenceBirdsall, C., and A. Langdon ( 2004 ), Plasma Physics Via Computer Simulation, Taylor and Francis, New York.en_US
dc.identifier.citedreferenceBoyd, I. ( 1996 ), Conservative species weighting scheme for the direct simulation Monte Carlo method, J. Thermophys. Heat Tr., 10 ( 4 ), 579 – 585.en_US
dc.identifier.citedreferenceBoyd, I., and R. Dressler ( 2002 ), Far field modeling of the plasma plume of a hall thruster, J. Appl. Phys., 92 ( 4 ), 1764 – 1774.en_US
dc.identifier.citedreferenceBurke, W., L. Gentile, J. Machuzak, D. Hardy, and D. Hunton ( 1995 ), Energy distributions of thruster pickup ions detected by the shuttle potential and return electron experiments during TSS 1, J. Geophys. Res., 100 ( A10 ), 19,773 – 19,790.en_US
dc.identifier.citedreferenceCai, C. ( 2005 ), Theoretical and numerical studies of plume flows in vacuum chambers, PhD dissertation, University of Michigan, Ann Arbor, Mich.en_US
dc.identifier.citedreferenceDrakes, J., and D. Swann ( 1999 ), DSMC computations of the Progress‐M spacecraft retrofiring exhaust plume, AIAA Paper No. AIAA‐99‐0975.en_US
dc.identifier.citedreferenceDressler, R., M. Bastian, D. Levandier, and E. Murad ( 1996 ), Empirical model of the state‐to‐state dynamics in near‐resonant hyperthermal X + +H 2 O charge‐transfer reactions, Int. J. Mass Spectrom. Ion Processes, 159, 245 – 256.en_US
dc.identifier.citedreferenceKaplan, C., and P. Bernhardt ( 2010 ), Effect of an altitude‐dependent background atmosphere on shuttle plumes, J. Spacecraft Rockets, 47 ( 4 ), 700 – 703.en_US
dc.identifier.citedreferenceKarabadzhak, G., Y. Plastinin, B. Khmelinin, V. Teslenko, N. Shvets, J Drakes, D. Swann, and W. McGregor ( 1997 ), Experimentation using the Mir station as a space laboratory, AIAA Paper No. AIAA‐97‐0288.en_US
dc.identifier.citedreferenceKatz, I., G. Jongeward, V. Davis, M. Mandell, I. Mikellides, R. Dressler, I. Boyd, K. Kannenberg, J. Pollard, and D. King ( 2001 ), A Hall effect thruster plume model including large‐angle elastic scattering, AIAA Paper No. AIAA‐2001‐3355.en_US
dc.identifier.citedreferenceLindsay, B., R. Rejoub, D. Sieglaff, and R. Stebbings ( 2001 ), Charge transfer of keV O( + ) ions with CO and H 2 O, J. Phys. B: At. Mol. Opt. Phys., 34, 2159 – 2165.en_US
dc.identifier.citedreferenceMcMahon, W., R. Salter, R. Hills, and D. Delorey ( 1983 ), Measured electron contribution to shuttle plasma environment, AIAA Paper No. AIAA‐83‐2598.en_US
dc.identifier.citedreferenceMiller, S., S. Pullins, D. Levandier, Y. Chiu, and R. Dressler ( 2002 ), Xenon charge exchange cross sections for electrostatic thruster models, J. Appl. Phys., 91 ( 3 ), 984 – 991.en_US
dc.identifier.citedreferencePullins, S., Y. Chiu, D. Levandier, and R. Dressler ( 2000 ), Ion dynamics in Hall effect and ion thrusters: Xe( + ) + Xe symmetric charge transfer, AIAA Paper No. AIAA‐00‐0603.en_US
dc.identifier.citedreferenceStuit, T. ( 2011 ), Designing the STS‐134 re‐rendezvous: A preparation for future crewed rendezvous missions, AIAA Paper No. 2011‐7189.en_US
dc.identifier.citedreferenceTurner, B., and J. Rutherford ( 1968 ), Charge transfer and ion‐atom interchange reactions of water vapor ions, J. Geophys. Res., 73, 6751 – 6758.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.