Show simple item record

Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling

dc.contributor.authorKimura, Jun‐ichien_US
dc.contributor.authorGill, James B.en_US
dc.contributor.authorKunikiyo, Tomoyukien_US
dc.contributor.authorOsaka, Isakuen_US
dc.contributor.authorShimoshioiri, Yusukeen_US
dc.contributor.authorKatakuse, Maikoen_US
dc.contributor.authorKakubuchi, Susumuen_US
dc.contributor.authorNagao, Takashien_US
dc.contributor.authorFuruyama, Katsuhikoen_US
dc.contributor.authorKamei, Atsushien_US
dc.contributor.authorKawabata, Hiroshien_US
dc.contributor.authorNakajima, Junichien_US
dc.contributor.authorvan Keken, Peter E.en_US
dc.contributor.authorStern, Robert J.en_US
dc.date.accessioned2014-05-23T15:59:40Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationKimura, Jun‐ichi ; Gill, James B.; Kunikiyo, Tomoyuki; Osaka, Isaku; Shimoshioiri, Yusuke; Katakuse, Maiko; Kakubuchi, Susumu; Nagao, Takashi; Furuyama, Katsuhiko; Kamei, Atsushi; Kawabata, Hiroshi; Nakajima, Junichi; van Keken, Peter E.; Stern, Robert J. (2014). "Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling." Geochemistry, Geophysics, Geosystems 15(3): 691-739.en_US
dc.identifier.issn1525-2027en_US
dc.identifier.issn1525-2027en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106933
dc.description.abstractIn response to the subduction of the young Shikoku Basin of the Philippine Sea Plate, arc magmas erupted in SW Japan throughout the late Cenozoic. Many magma types are present including ocean island basalt (OIB), shoshonite (SHO), arc‐type alkali basalt (AB), typical subalkalic arc basalt (SAB), high‐Mg andesite (HMA), and adakite (ADK). OIB erupted since the Japan Sea back‐arc basin opened, whereas subsequent arc magmas accompanied subduction of the Shikoku Basin. However, there the origin of the magmas in relation to hot subduction is debated. Using new major and trace element and Sr‐Nd‐Pb‐Hf isotope analyses of 324 lava samples from seven Quaternary volcanoes, we investigated the genetic conditions of the magma suites using a geochemical mass balance model, Arc Basalt Simulator version 4 (ABS4), that uses these data to solve for the parameters such as pressure/temperature of slab dehydration/melting and slab flux fraction, pressure, and temperature of mantle melting. The calculations suggest that those magmas originated from slab melts that induced flux melting of mantle peridotite. The suites differ mostly in the mass fraction of slab‐melt flux, increasing from SHO through AB, SAB, HMA, to ADK. The pressure and temperature of mantle melting decreases in the same order. The suites differ secondarily in the ratio of altered oceanic crust to sediment in the source of the slab melt. The atypical suites associated with hot subduction result from unusually large mass fractions of slab melt and unusually cool mantle temperatures. Key Points Slab melts generate various magma types in SW Japan arc Numerical mass balance geochemical model revealed source conditions of magmas Origin of magma genesis between hot and cold subduction zones is discusseden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringeren_US
dc.subject.otherSlab Meltingen_US
dc.subject.otherSW Japanen_US
dc.subject.otherHigh‐Mg Andesiteen_US
dc.subject.otherGeochemistryen_US
dc.subject.otherAlkali Basalten_US
dc.subject.otherAdakiteen_US
dc.subject.otherSubalkali Basalten_US
dc.titleDiverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modelingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106933/1/ggge20392-sup-0010-suppinfo02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106933/2/ggge20392-sup-0001-suppinfo01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106933/3/ggge20392.pdf
dc.identifier.doi10.1002/2013GC005132en_US
dc.identifier.sourceGeochemistry, Geophysics, Geosystemsen_US
dc.identifier.citedreferenceSisson, T. W., and T. L. Grove ( 1993 ), Experimental investigations of the role of H 2 O in calc‐alkaline differentiation and subduction zone magmatism, Contrib. Mineral. Petrol., 113, 143 – 166.en_US
dc.identifier.citedreferenceTatsumi, Y., and T. Koyaguchi ( 1989 ), An absalokite from a phlogopite lherzorite source, Contrib. Mineral. Petrol., 102, 34 – 40.en_US
dc.identifier.citedreferenceTatsumi, Y., and S. Eggins ( 1995 ), Subduction Zone Magmatism, Blackwell Sci, Boston.en_US
dc.identifier.citedreferenceTatsumi, Y., and T. Hanyu ( 2003 ), Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high‐Mg andesite formation in the Setouchi volcanic belt, SW Japan, Geochem. Geophys. Geosyst., 4 ( 9 ), 1081, doi: 10.1029/2003GC000530.en_US
dc.identifier.citedreferenceTatsumi, Y., R. Arai, and K. Ishizaka ( 1999 ), The petrology of a melilite‐olivine nephelinite from Hamada, SW Japan, J. Petrol., 40, 497 – 509.en_US
dc.identifier.citedreferenceTatsumi, Y., H. Shukuno, K. Tani, N. Takahashi, S. Kodaira, and T. Kogiso1 ( 2008a ), Structure and growth of the Izu‐Bonin‐Mariana arc crust: 2. Role of crust‐mantle transformation and the transparent Moho in arc crust evolution, J. Geophys. Res., 113, B02203, doi: 10.1029/2007JB005121.en_US
dc.identifier.citedreferenceTatsumi, Y., T. Takahashi, Y. Hirahara, Q. Chang, T. Miyazaki, J.‐I. Kimura, M. Ban, and A. Sakayori ( 2008b ), New Insights into andesite genesis: The role of mantle‐derived calc‐alkalic and crust‐derived tholeiitic melts in magma differentiation beneath Zao Volcano, NE Japan, J. Petrol., 49, 1971 – 2008, doi: 10.1093/prtrology/egn1055.en_US
dc.identifier.citedreferenceTiepolo, M., R. Vannucci, P. Bottazzi, R. Oberti, A. Zanetti, and S. Foley ( 2000a ), Partitioning of rare earth elements,Y, Th, U, and Pb between pargasite, kaersutite, and basanite to trachyte melts: Implications for percolated and veined mantle, Geochemi. Geophys. Geosyst., 1 ( 8 ), 1039, doi: 10.1023/2000GC000064.en_US
dc.identifier.citedreferenceTiepolo, M., R. Vannucci, R. Oberti, S. Foley, P. Bottazzi, and A. Zanetti ( 2000b ), Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal‐chemical constraints and implications for natural systems, Earth Planet. Sci. Lett., 176, 185 – 201.en_US
dc.identifier.citedreferenceTiepolo, M., R. Oberti, A. Zanetti, R. Vannucci, and S. Foley ( 2007 ), Trace‐element partitioning between amphibole and silicate melt, in Amphiboles: Crystal Chemistry, Occurrence, and Health Issues: Reviews in Mineralogy and Geochemistry edited by F. C. Hawthorne et al., pp. 417 – 452, Mineral. Soc. Am. and Geochem. Soc. The Mineralogical Society of America, Chantilly, Virginia.en_US
dc.identifier.citedreferenceTill, C. B., T. L. Grove, and M. J. Krawczynski ( 2012a ), A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields, J. Geophyi. Res., 117, B06206, doi: 10.1029/2011JB009044.en_US
dc.identifier.citedreferenceTill, C. B., T. L. Grove, and A. C. Withers ( 2012b ), The beginnings of hydrous mantle wedge melting, Contrib. Mineral. Petrol., 163, 669 – 688.en_US
dc.identifier.citedreferenceTollstrup, D. L., and J. B. Gill ( 2005 ), Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases, Geology, 33, 737 – 740.en_US
dc.identifier.citedreferenceTollstrup, D. L., J. B. Gill, A. J. R. Kent, D. Prinkey, R. Williams, Y. Tamura, and O. Ishizuka ( 2010 ), Across‐arc geochemical trends in the Izu‐Bonin arc: Contributions from the subducting slab, revisited, Geochem. Geophys. Geosyst., 11, Q01X10, doi: 10.1029/2009GC002847.en_US
dc.identifier.citedreferenceTorii, M., A. Hayashida, and Y. Otofuji ( 1986 ), Rotation of the Southwest Japan arc and formation of the Japan Sea, in Development of the Japanese Islands: History as a Mobile Belt and the Present State, edited by A. Taira and K. Nakamura, pp. 235 – 240, Iwanami Shoten, Tokyo.en_US
dc.identifier.citedreferenceTsuchiya, N., S. Suzuki, J.‐I. Kimura, and H. Kagami ( 2005 ), Evidence for slabmelt/mantle reaction: Petrogenesis of Early Cretaceous and Eocene high‐Mg andesites from the Kitakami Mountains, Japan, Lithos, 79, 179 – 206.en_US
dc.identifier.citedreferenceTsuji, Y., J. Nakajima, and A. Hasegawa ( 2008 ), Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications for water transportation in subduction zones, Geophys. Res. Lett., 35, L14308, doi: 10.1029/2008GL034461.en_US
dc.identifier.citedreferenceTsukui, M., H. Nishido, and K. Nagao ( 1985 ), K‐Ar ages of the Hiruzen Volcano Group and Daisen Volcano, J. Geol. Soc. Jpn., 91, 279 – 288.en_US
dc.identifier.citedreferenceUmino, S., and I. Kushiro ( 1989 ), Experimental studies on boninite petrogenesis, in Boninite and Related Rocks, edited by A. J. Crawford, pp. 89 – 109, Unwin Hyman, London.en_US
dc.identifier.citedreferenceUto, K., E. Takahashi, E. Nakamura, and I. Kaneoka ( 1994 ), Geochronology of alkali volcanism in Oki‐Dogo Island, southwest Japan: Geochemical evolution of basalts related to the opening of the Japan Sea, Geochem. J., 28, 431 – 449.en_US
dc.identifier.citedreferencevan Keken, P. E., B. Kiefer, and S. M. Peacock ( 2002 ), High resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem. Geophys. Geosyst., 3 ( 10 ), 1056, doi: 10.1029/2001GC000256.en_US
dc.identifier.citedreferencevan Keken, P. E., B. R. Hacker, E. M. Syracuse, and G. A. Abers ( 2011 ), Subduction factory: 4. Depth‐dependent flux of H 2 O from subduction slabs worldwide, J. Geophys. Res., 116, B01401, doi: 10.1029/2010JB00922.en_US
dc.identifier.citedreferenceWillbold, M., and A. Stracke ( 2006 ), Trace element composition of mantle end‐members: Implications for recycling of oceanic and upper and lower continental crust, Geochem. Geophys. Geosyst., 7, Q04004, doi: 10.1029/2005GC001005.en_US
dc.identifier.citedreferenceWilson, M. ( 1989 ), Igneous Petrogenesis: A Grobal Tectonic Approach, 466 pp., Unwin‐Hyman, London.en_US
dc.identifier.citedreferenceWood, B. J., and J. D. Blundy ( 1997 ), A predictive model for rare earthe element partitioning between clinopyroxene and anhydrous silicate melt, Contrib. Mineral. Petrol., 129, 166 – 181.en_US
dc.identifier.citedreferenceWorkman, R. K., and S. R. Hart ( 2005 ), Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 231, 53 – 72.en_US
dc.identifier.citedreferenceYamada, R., T. Yoshida, and J.‐I. Kimura ( 2013 ), Chemical and isotopic characteristics of the Kuroko‐forming volcanism, Resour. Geol., 62, 369 – 383.en_US
dc.identifier.citedreferenceYamamoto, T., and N. Hoang ( 2009 ), Synchronous Japan Sea opening Miocene fore‐arc volcanism in the Abukuma Mountains, NE Japan: An advancing hot asthenosphere flow versus Pacific slab melting, Lithos, 112, 575 – 590.en_US
dc.identifier.citedreferenceYamauchi, S., Y. Sawada, A. Takasu, H. Komuro, H. Murakami, S. Kobayashi, and R. Tayama ( 2009 ), Geology of the Saigo District with 1/50000 scale geological map, Geol. Surv. Jpn., 121.en_US
dc.identifier.citedreferenceYogodzinski, G. M., R. W. Kay, O. N. Volynets, A. V. Koloskov, and S. M. Kay ( 1995 ), Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge, Geol. Soc. Am. Bull., 107, 505 – 519.en_US
dc.identifier.citedreferenceYogodzinski, G. M., J. M. Lees, T. G. Churikova, F. Dorendorf, G. Welner, and O. N. Volynets ( 2001 ), Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges, Nature, 409, 500 – 504.en_US
dc.identifier.citedreferenceYuge, T., T. Imaoka, and S. Iizumi ( 1998 ), Whole‐rock chemistry and Sr and Nd isotope ratios of Cretaceous rhyolite and granodiorite in Abu district, Yamaguchi Prefecture, Southwest Japan, J. Geol. Soc. Jpn., 104, 159 – 170.en_US
dc.identifier.citedreferenceYuhara, M., Y. Takahashi, and H. Kagami ( 1998 ), Rb‐Sr whole rock isochron ages and source materials of granitic rocks in Awaji Island, southwest Japan arc, Bull. Geol. Surv. Jpn., 49, 477 – 491.en_US
dc.identifier.citedreferenceYuhara, M., T. Miyazaki, H. Kagami, and M. Yuhara ( 2003 ), Rb‐Sr and K‐Ar geochronology and petrogenesis of the Aji granite in the eastern Sanuki district, Ryoke belt, southwest Japan, J. Mineral. Petrol. Sci., 98, 19 – 30.en_US
dc.identifier.citedreferenceZellmer, G. F., Y. Iizuka, M. Miyoshi, Y. Tamura, and Y. Tatsumi ( 2012 ), Lower crustal H 2 O controls on the formation of adakitic melts, Geology, 40, 487 – 490, doi: 10.1130/G32912.32911.en_US
dc.identifier.citedreferenceZhao, D., T. Yanada, A. Hasegawa, N. Umino, and W. Wei ( 2012 ), Imaginng the subducting slabs and mantle upwelling under the Japan Islands, Geophys. J. Int., 190, 816 – 828.en_US
dc.identifier.citedreferenceAbe, N., and S. Arai ( 2005 ), Petrography and geochemistry of the mantle xenoliths: Implications for lithospheric mantle beneath the Japan arcs, Jpn. Mag. Mineral. Petrol. Sci., 34, 143 – 158.en_US
dc.identifier.citedreferenceAlmeev, R. R., J.‐I. Kimura, A. A. Ariskin, and A. Y. Ozerov ( 2013a ), Decoding crystal fractionation in calc‐alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions, J. Volcanol. Geotherm. Res., 263, 141 – 171, doi: 10.1016/j.jvolgeores.2013.1001.1003.en_US
dc.identifier.citedreferenceAlmeev, R. R., A. A. Ariskin, J.‐I. Kimura, and G. S. Barmina ( 2013b ), The role of polybaric crystallization in genesis of andesitic magmas: Phase equilibria simulations of the Bezymianny volcanic subseries, J. Volcanol. Geotherm. Energy, 263, 182 – 192, doi: 10.1016/j.jvolgeores.2013.1001.1004.en_US
dc.identifier.citedreferenceAlonso‐Perez, R., O. Müntener, and P. Ulmer ( 2009 ), Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids, Contrib. Mineral. Petrol., 157, 541 – 558.en_US
dc.identifier.citedreferenceAyers, J. C., S. K. Dittmer, and G. D. Layne ( 1997 ), Partitioning of elements between peridotite and H 2 O at 2.0–3.0 GPa and 900–1100°C, and applications to models of subduction zone processes, Earth Planet. Sci. Lett., 150, 381 – 398.en_US
dc.identifier.citedreferenceBaker, J., D. Peate, T. Waight, and C. Meyzen ( 2004 ), Pb isotopic analysis of standards and samples using a 207 Pb‐ 204 Pb double spike and thallium to correct for mass bias with a double‐focusing MC‐ICP‐MS, Chem. Geol., 211, 275 – 203.en_US
dc.identifier.citedreferenceBeard, J. S., and G. E. Lofgren ( 1991 ), Dehydration melting and water‐saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, 6.9 kbar, J. Petrol., 32, 365 – 401.en_US
dc.identifier.citedreferenceBebout, G. E. ( 2007 ), Metamorphic chemical geodynamics of subduction zones, Earth Planet. Sci. Lett., 260, 373 – 393.en_US
dc.identifier.citedreferenceBédard, J. H. ( 2005 ), Partitioning coefficients between olivine and silicate melts, Lithos, 83, 394 – 419.en_US
dc.identifier.citedreferenceBehn, M. D., P. B. Kelemen, G. Hirth, B. R. Hacker, and H.‐J. Massonne ( 2011 ), Diapirs as the source of the sediment signature in arc lavas, Nat. Geosci., 4, 641 – 646.en_US
dc.identifier.citedreferenceBindeman, I. N. ( 2007 ), Erratum to I. N. Bindeman, A. M. Davis, and M. J. Drake (1998), “Ion microprobe study of plagioclase‐basalt partition experiments at natural concentration levels of trace elements” Geochimica Cosmochimica Acta 62, 1175–1193, Geochim. Cosmochim. Acta, 71, 2414.en_US
dc.identifier.citedreferenceBindeman, I. N., A. M. Davis, and M. J. Drake ( 1998 ), Ion microprobe study of plagioclase‐basalt partition experiments at natural concentration levels of trace elements, Geochim. Cosmochim. Acta, 62, 1175 – 1193.en_US
dc.identifier.citedreferenceBrichert‐Toft, J., C. Chauvel, and F. Albalède ( 1997 ), Separation of Hf and Lu for high‐precision isotope analysis of rock samples by magnetic sector‐multiple collector ICP‐MS, Contrib. Mineral. Petrol., 127, 248 – 260.en_US
dc.identifier.citedreferenceBryant, J. A., G. M. Yogodzinski, and T. G. Churikova ( 2007 ), Melt‐mantle interactions beneath the Kamchatka arc: Evidence from ultramafic xenoliths from Shiveluch volcano, Geochem. Geophys. Geosyst., 8, Q04007, doi: 10.1029/2006GC001443.en_US
dc.identifier.citedreferenceCalmus, T., A. Aguillon‐Robles, R. C. Maury, H. Bellon, M. Benoit, J. Cotten, J. Bourgois, and F. Michaud ( 2003 ), Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: The role of slab melts, Lithos, 66, 77 – 105.en_US
dc.identifier.citedreferenceCastillo, P. R. ( 2006 ), An overview of adakite petrogenesis, Chin. Sci. Bull., 51, 257 – 268.en_US
dc.identifier.citedreferenceChauvel, C., J.‐C. Marini, T. Plank, and J. N. Ludden ( 2009 ), Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle, Geochem. Geophys. Geosyst., 10, Q01001, doi: 10.1029/2008GC002101.en_US
dc.identifier.citedreferenceConnolly, J. A. D., and D. M. Kerrick ( 1987 ), An algorithm and computer program for calculating composition phase diagrams, Calphad, 11, 1 – 55.en_US
dc.identifier.citedreferenceConnolly, J. A. D., and K. Petrini ( 2002 ), An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions, J. Metamorph. Geol., 20, 697 – 708.en_US
dc.identifier.citedreferenceDefant, M. J., and M. S. Drummond ( 1990 ), Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662 – 665.en_US
dc.identifier.citedreferenceDraper, D. S., and W. van Westrenen ( 2007 ), Quantifying garnet‐melt trace element partitioning using lattice‐strain theory: Assessment of statistically significant controls and a new predictive model, Contrib. Mineral. Petrol., 154, 731 – 746.en_US
dc.identifier.citedreferenceFeineman, M. D., F. J. Ryerson, D. J. DePaolo, and T. Plank ( 2007 ), Zoisite‐aqueous fluid trace element partitioning with implications for subduction zone fluid composition, Chem. Geol., 239, 250 – 265.en_US
dc.identifier.citedreferenceFeineman, M. D., T. Moriguchi, T. Yokoyama, S. Terui, and E. Nakamura ( 2013 ), Sediment‐enriched adakitic magmas from the Daisen volcanic field, Southwest Japan, Geochem. Geophys. Geosyst., 14, 3009 – 3031, doi: 10.1002/ggge.20176.en_US
dc.identifier.citedreferenceFujibayashi, N., T. Nagao, H. Kagami, M. Iwata, and K. Tazaki ( 1989 ), Spatial variation in the Sr and Nd isotope compositions of Cenozoic alkali basalts from the Chugoku district, J. Mineral. Petrol. Econ. Geol., 84, 429 – 443.en_US
dc.identifier.citedreferenceFuruyama, K., K. Nagao, S. Mitsui, and K. Kasatani ( 1993a ), K‐Ar ages of Late Neogene monogenetic volcanoes in the east San‐in district, Southwest Japan, Earth Sci., 47, 519 – 532.en_US
dc.identifier.citedreferenceFuruyama, K., K. Nagao, K. Kasatani, and S. Mitsui ( 1993b ), K‐Ar ages of the Kannabe Volcano Group and the adjacent basaltic monogenetic volcanoes, east San‐in district, Earth Sci., 47, 377 – 390.en_US
dc.identifier.citedreferenceFuruyama, K., K. Nagao, and M. Murata ( 2002 ), K‐Ar ages of andesites from two volcanic arrays in western Chugoku, Southwest Japan, Bull. Volcanol. Soc. Jpn., 47, 481 – 487.en_US
dc.identifier.citedreferenceGaetani, G. A., and T. L. Grove ( 1998 ), The influence of water on melting of mantle peridotite, Contrib. Mineral. Petrol., 131, 323 – 346.en_US
dc.identifier.citedreferenceGazel, E., K. Hoernle, M. J. Carr, C. Herzberg, I. Saginor, P. van den Bogaard, F. Hauff, M. Feigenson, and C. Swisher ( 2011 ), Plume‐subduction interaction in southern Central America: Mantle upwelling and slab melting, Lithos, 121 ( 1–4 ), 117 – 134.en_US
dc.identifier.citedreferenceGhiorso, M. S., M. M. Hirschmann, P. W. Reiners, and V. C. Kress ( 2002 ), The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochem. Geophys. Geosyst., 3 ( 5 ), 1030, doi: 10.1029/2001GC000217.en_US
dc.identifier.citedreferenceGill, J. B. ( 1981 ), Orogenic Andesites and Plate Tectonics, 385 pp., Springer, Heidelberg, Germany.en_US
dc.identifier.citedreferenceGreen, T. H., and J. Adam ( 2002 ), Experimentally‐determined trace element characteristics of aqueous fluid from partilly dehydrated mafic ocanic crust at 3.0 GPa, 650–700°C, Eur. J. Mineral., 15, 815 – 830.en_US
dc.identifier.citedreferenceGreen, T. H., J. D. Blundy, J. Adam, and G. M. Yaxley ( 2000 ), SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C, Lithos, 25, 165 – 187.en_US
dc.identifier.citedreferenceGrove, T. L., and R. J. Kinzler ( 1986 ), Petrogenesis of andesites, Annu. Rev. Earth Planet. Sci., 14, 417 – 454.en_US
dc.identifier.citedreferenceGrove, T. L., N. Chatterjee, S. W. Parman, and E. Médard ( 2006 ), The influence of H 2 O on mantle melting, Earth Planet. Sci. Lett., 249, 74 – 89, doi: 10.1016/j.epsl.2006.1006.1043.en_US
dc.identifier.citedreferenceGrove, T. L., E. S. Holbig, J. A. Barr, C. B. Till, and M. J. Krawczynski ( 2013 ), Melts of garnet lherzolite: Experiments, models and comparison to melts of pyroxenite and carbonated lherzolite, Contrib. Mineral. Petrol., 166, 887 – 910.en_US
dc.identifier.citedreferenceHacker, B. R. ( 2008 ), H 2 O subduction beyond arcs, Geochem. Geophys. Geosyst., 9, Q03001, doi: 10.1029/2007GC001707.en_US
dc.identifier.citedreferenceHacker, B. R., G. A. Abers, and S. M. Peacock ( 2003 ), Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents, J. Geophys. Res., 108 ( B1 ), 2029, doi: 10.1029/2001JB001127.en_US
dc.identifier.citedreferenceHaraguchi, S., T. Ishii, J.‐I. Kimura, and Y. Ohara ( 2003 ), Formation of tonalite from basaltic magma at the Komahashi‐Daini Seamount, northern Kyushu‐Palau Ridge in the Philippine Sea, and growth of Izu‐Ogasawara (Bonin)‐Mariana arc crust, Contrib. Mineral. Petrol., 145, 151 – 168.en_US
dc.identifier.citedreferenceHart, S. R. ( 1984 ), A large scale isotope anomaly in the Southern Hemisphere mantle, Nature, 309, 753 – 757.en_US
dc.identifier.citedreferenceHauff, F., K. Hoernle, and A. Schmidt ( 2003 ), Sr‐Nd‐Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu‐Bonin‐Mariana subduction system, Geochem. Geophys. Geosyst., 4 ( 8 ), 8913, doi: 10.1029/2002GC000421.en_US
dc.identifier.citedreferenceHermann, J., and D. Rubatto ( 2009 ), Accessory phase control on the trace element signature of sediment melts in subduction zones, Chem. Geol., 265, 512 – 526.en_US
dc.identifier.citedreferenceHermann, J., and C. J. Spandler ( 2008 ), Sediment melts at sub‐arc depths: An experimental study, J. Petrol., 49, 717 – 740.en_US
dc.identifier.citedreferenceHerzberg, C. ( 2011 ), Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins, J. Petrol., 52, 113 – 146.en_US
dc.identifier.citedreferenceHerzberg, C., and P. D. Asimow ( 2008 ), Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation, Geochem. Geophys. Geosyst., 9, Q09001, doi: 10.1029/2008GC002057.en_US
dc.identifier.citedreferenceHickey‐Vargas, R. L. ( 1998 ), Origin of the Indian Ocean‐type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large‐scale processes, J. Geophys. Res., 103 (B 9 ), 20,963 – 20,979.en_US
dc.identifier.citedreferenceHirschmann, M. M., M. S. Ghiorso, F. A. Davis, S. M. Gordon, S. Mukherjee, T. L. Grove, M. Krawczynski, E. Medard, and C. B. Till ( 2008 ), Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data, Geochem. Geophys. Geosyst., 9, Q03011, doi: 10.1029/2007GC001894.en_US
dc.identifier.citedreferenceHoang, N., and K. Uto ( 2003 ), Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): Implications for asthenosphere and lithospheric mantle interaction, Chem. Geol., 198, 249 – 268.en_US
dc.identifier.citedreferenceHochstaedter, A., J. Gill, R. Peters, P. Broughton, and P. Holden ( 2001 ), Across‐arc geochemical trends in the Izu‐Bonin arc: Contributions from the subducting slab, Geochem. Geophys. Geosyst., 2 ( 3 ), 1019, doi: 10.1029/2000GC000105.en_US
dc.identifier.citedreferenceHyndman, R., and S. M. Peacock ( 2003 ), Serpentinization of the forearc mantle, Earth Planet. Sci. Lett., 212, 417 – 432.en_US
dc.identifier.citedreferenceIizumi, S., S. Otani, and K. Hara ( 1999 ), Sr and Nd isotope ratios of Middle Miocene volcanic rocks from Shimane Peninula, San'in district, Southwest Japan, Mem. Geol. Soc. Jpn., 53, 389 – 391.en_US
dc.identifier.citedreferenceIkawa, T., M. Onimura, T. Imaoka, and H. Kagami ( 1999 ), Petrography and Sr and Nd isotope ratios of the Sekidogadake Granophyre and associated rhyolites, central part of Yamaguchi Prefecture, Southwest Japan, Mem. Geol. Soc. Jpn., 53, 333 – 348.en_US
dc.identifier.citedreferenceImaoka, T., K. Kiminami, K. Nishida, M. Takemoto, T. Ikawa, H. Kagami, and S. Iizumi ( 2011 ), K‐Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene‐Oligocene thermo‐tectonic reactivation, J. Asian Earth Sci., 40, 509 – 533.en_US
dc.identifier.citedreferenceIshioka, J., and S. Iizumi ( 2003 ), Petrochemical and Sr‐Nd isotope investigations of Cretaceous intrusive rocks and their enclaves in the Togouchi‐Yoshiwa district, northwest Hiroshima prefecture, SW Japan, Geochem. J., 37, 449 – 470.en_US
dc.identifier.citedreferenceIshizuka, O., et al. ( 2006 ), Early stages in the evolution of Izu‐Bonin arc volcanism: New age, chemical, and isotopic constraints, Earth Planet. Sci. Lett., 250, 385 – 401.en_US
dc.identifier.citedreferenceIshizuka, O., R. N. Taylor, M. Yuasa, and Y. Ohara ( 2011 ), Making and breaking an island arc: A new perspective from the Oligicene Kyushu‐Palau arc, Philippine Sea, Geochem. Geophys. Geosyst., 12, Q05005, doi: 10.1029/2010GC003440.en_US
dc.identifier.citedreferenceIwamori, H. ( 1991 ), Zonal structure of Cenozoic basalts related to mantle upwelling in southwest Japan, J. Geophys. Res., 96 ( B4 ), 6157 – 6170.en_US
dc.identifier.citedreferenceIwamori, H. ( 1992 ), Degree of melting and source composition of Cenozoic basalts in southwest Japan: Evidence for mantle upwelling by flux melting, J. Geophys. Res., 97 ( B7 ), 10,983 – 10,995.en_US
dc.identifier.citedreferenceJacques, G., K. Hoernle, J. B. Gill, F. Hauff, H. Wehrmann, D. Garbe‐Schönberg, P. van den Bogaard, I. Bindeman, and L. E. Lara ( 2013 ), Across‐arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): Constraints on mantle wedge and slab input compositions, Geochim. Cosmochim. Acta, 123, 218 – 243.en_US
dc.identifier.citedreferenceJohannes, W., and F. Holtz ( 1996 ), Petrogenesis and Experimental Petrology of Granitic Rocks, 335 pp., Springer, Heiderberg, Germany.en_US
dc.identifier.citedreferenceKagami, H., and T. Imaoka ( 2008 ), Investigation of petrogenesis of granites based on Sr and Nd isotopes, Earth Sci., 62, 131 – 138.en_US
dc.identifier.citedreferenceKagami, H., H. Honma, T. Shirahase, and T. Nureki ( 1988 ), Rb‐Sr whole rock isochron ages of granites from northern Shikoku and Okayama, Southwest Japan: Implications for the migration of the Late Cretaceous to Paleogene igneous activity in space and time, Geochem. J., 22, 69 – 79.en_US
dc.identifier.citedreferenceKagami, H., S. Iizumi, Y. Tainosho, and M. Owada ( 1992 ), Spatial variations of Sr and Nd isotope ratios of Cretaceous‐Paleogene granitoid rocks, Southwest Japan Arc, Contrib. Mineral. Petrol., 112, 165 – 177.en_US
dc.identifier.citedreferenceKagami, H., et al. ( 2000 ), Continental basalts in the accretionary complexes of the South‐west Japan arc: Constraints from geochemival and Sr amd Nd isotopic data of metadiabase, Island Arc, 9, 3 – 20.en_US
dc.identifier.citedreferenceKakubuchi, S., T. Nagao, and K. Nagao ( 2000 ), K‐Ar ages and magmatic history of the Abu Monogenetic Volcano Group, Jpn. Mag. Mineral. Petrol. Sci., 29, 191 – 198.en_US
dc.identifier.citedreferenceKatsumata, A. ( 2010 ), Depth of the Moho discontinuity beneath the Japanese islands estimated by traveltime analysis, J. Geophys. Res., 115, B04303, doi: 10.1029/2008JB005864.en_US
dc.identifier.citedreferenceKatsumata, A., and N. Kamaya ( 2003 ), Low‐frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan, Geophys. Res. Lett., 30 ( 1 ), 1020, doi: 10.1029/2002GL0159812.en_US
dc.identifier.citedreferenceKatz, R. F., M. Spiegelman, and C. H. Langmuir ( 2003 ), A new parameterization of hydrous mantle melting, Geochem. Geophys. Geosyst., 4 ( 9 ), 1073, doi: 10.1029/2002GC000433.en_US
dc.identifier.citedreferenceKay, R. W. ( 1980 ), Volcanic arc magmas: Implications of a melting‐mixing model for element recycling in the crust‐upper mantle system, J. Geol., 88, 497 – 522.en_US
dc.identifier.citedreferenceKelemen, P. B., S. R. Hart, and S. Bernstein ( 1998 ), Silica enrichment in the continental upper mantle via melt/rock reaction, Earth Planet. Sci. Lett., 164, 387 – 406.en_US
dc.identifier.citedreferenceKelemen, P. B., G. M. Yogodzinski, and D. W. Scholl ( 2013 ), Along‐strike variation in the Aleutian island arc: Genesis of high‐Mg# andesite and implications for continental crust, in Inside the Subduction Factory, edited by J. Eiler, AGU, Washington, D. C., 223 – 276, doi: 10.1029/138GM11.en_US
dc.identifier.citedreferenceKelley, K. A., T. Plank, J. Ludden, and H. Staudigel ( 2003 ), Composition of altered oceanic crust at ODP Sites 801 and 1149, Geochem. Geophys. Geosyst., 4 ( 6 ), 8910, doi: 10.1029/2002GC000435.en_US
dc.identifier.citedreferenceKelley, K. A., T. Plank, S. Newman, E. M. Stolper, T. L. Grove, S. Parman, and E. H. Hauri ( 2010 ), Mantle melting as a function of water content beneath the Mariana arc, J. Petrol., 51, 1711 – 1738.en_US
dc.identifier.citedreferenceKessel, R., M. W. Schmidt, P. Ulmer, and T. Pettke ( 2005 ), Trace element signature of subduction‐zone fluids, melts and superctical liquids at 120–180 km depth, Nature, 437, 724 – 727.en_US
dc.identifier.citedreferenceKimura, J.‐I. ( 2012 ), Arc Basalt Simulator (ABS) Version 3, EarthChem Library. [Available at: http://www.earthchem.org/library.]en_US
dc.identifier.citedreferenceKimura, J.‐I., and Y. Yamada ( 1996 ), Evaluation of major and trace element XRF analyses using flux to sample ratio of two to one glass beads, J. Mineral. Petrol. Econ. Geol., 91, 62 – 72.en_US
dc.identifier.citedreferenceKimura, J.‐I., and T. Yoshida ( 2006 ), Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc, J. Petrol., 47, 2185 – 2232.en_US
dc.identifier.citedreferenceKimura, J.‐I., and R. J. Stern ( 2008 ), Neogene volcanism of the Japan island arc: The K‐h relationship revisited, in Ores and Orogenesis: Circum‐Pacific Tectonics, Geologic Evolution, and Ore Deposits: Arizona Geological Society Digest 22, edited by J. E. Spencer and S. R. Titley, pp. 187 – 202, Arizona Geological Society, Tucson, Arizona.en_US
dc.identifier.citedreferenceKimura, J.‐I., Y. Takaku, and T. Yoshida ( 1995 ), Igneous rock analysis using ICP‐MS with internal standardization, isobaric ion overlap correction, and standard addition methods, Sci. Rep. Fukushima Univ., 56, 1 – 12.en_US
dc.identifier.citedreferenceKimura, J.‐I., W. I. Manton, C.‐H. Sun, S. Iizumi, T. Yoshida, and R. J. Stern ( 2001 ), Chemical diversity of the Ueno Basalts, central Japan: Identification of mantle and crustal contributions to arc basalts, J. Petrol., 43, 1923 – 1946.en_US
dc.identifier.citedreferenceKimura, J.‐I., M. Kawahara, and S. Iizumi ( 2003a ), Lead isotope analysis using TIMS following single column‐single bead Pb separation, Geosci. Rep. Shimane Univ., 22, 49 – 53.en_US
dc.identifier.citedreferenceKimura, J.‐I., et al. ( 2003b ), Late Cenozoic volcanic activity in the Chugoku area, Southwest Japan arc during back arc basin opening and re‐initiation of subduction, Island Arc, 12, 22 – 45.en_US
dc.identifier.citedreferenceKimura, J.‐I., R. J. Stern, and T. Yoshida ( 2005a ), Reinitiation of subduction and magmatic responces in SW Japan during Neogene time, Geol. Soc. Am. Bull., 117, 969 – 986.en_US
dc.identifier.citedreferenceKimura, J.‐I., M. Tateno, and I. Osaka ( 2005b ), Geology and geochemistry of Karasugasen lava dome, Daisen‐Hiruzen Volcano Group, southwest Japan, Island Arc, 14, 115 – 136.en_US
dc.identifier.citedreferenceKimura, J.‐I., T. W. Sisson, N. Nakano, M. L. Coombs, and P. W. Lipman ( 2006 ), Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of Hilina mantle component, J. Volcanol. Geotherm. Res., 151, 51 – 72, doi: 10.1016/j.jvolgeores.2005.1007.1024.en_US
dc.identifier.citedreferenceKimura, J.‐I., P. van Keken, B. R. Hacker, H. Kawabata, T. Yoshida, and R. J. Stern ( 2009 ), Arc Basalt Simulator (ABS) version 2, a simulation model for slab dehydration, fluid‐mantle reaction, and fluid‐fluxed mantle melting for arc basalts: Modeling scheme and application, Geochem. Geophys. Geosyst., 10, Q09004, doi: 10.1029/2008GC002217.en_US
dc.identifier.citedreferenceKimura, J.‐I., J. R. K. Adam, M. Rowe, N. Nakano, M. Katakuse, P. van Keken, B. Hacker, and R. J. Stern ( 2010 ), Origin of cross‐chain geochemical variation in Quaternary lavas from northern Izu arc: A quantitative mass balance approach on source identification and mantle wedge processes, Geochem. Geophys. Geosyst., 11, Q10011, doi: 10.1029/2010GC003050.en_US
dc.identifier.citedreferenceKita, S., T. Okada, J. Nakajima, T. Matsuzawa, and A. Hasegawa ( 2006 ), Existence of a seismic belt in the upper plane of the double seismic zone extending in the along‐arc direction at depths of 70–100 km beneath NE Japan, Geophys. Res. Lett., 33, L24310, doi: 10.1029/2006GL028239.en_US
dc.identifier.citedreferenceKogiso, T., M. M. Hirschmann, and M. Pertermann ( 2004 ), High‐pressure partial melting of mafic lithologies in the mantle, J. Petrol., 45, 2407 – 2422.en_US
dc.identifier.citedreferenceKuritani, T., E. Ohtani, and J.‐I. Kimura ( 2011 ), Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation, Nat. Geosci., 4, 713 – 716.en_US
dc.identifier.citedreferenceKushiro, I. ( 1969 ), The system forsterite–diopside–silica with and without water at high pressures, Am. J. Sci., 267A, 269 – 294.en_US
dc.identifier.citedreferenceKushiro, I. ( 1973 ), Origin of some magmas in oceanic and circum‐oceanic regions, Tectonophysics, 17, 211 – 222.en_US
dc.identifier.citedreferenceLaTourrette, T., R. L. Hervig, and J. R. Holloway ( 1995 ), Trace element partitioning between amphibole, phlogopite, and basanite melt, Earth Planet. Sci. Lett., 135, 13 – 30.en_US
dc.identifier.citedreferenceLeeman, W. P., J. F. Lewis, R. C. Evarts, R. M. Conrey, and M. A. Streck ( 2005 ), Petrologic constraints on the thermal structure of the Cascades arc, J. Volcanol. Geotherm. Res., 140, 67 – 105.en_US
dc.identifier.citedreferenceLi, Y.‐B., et al. ( 2013 ), High‐Mg adakite and low‐Ca boninite from a Bonin fore‐arc seamount: Implications for the reaction between slab melts and depleted mantle, J. Petrol., 54 ( 6 ), 1149 – 1175, doi: 10.1093/petrology/egt1008.en_US
dc.identifier.citedreferenceMacpherson, C. G., S. T. Dreher, and M. F. Thirlwall ( 2006 ), Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines, Earth Planet. Sci. Lett., 243, 581 – 593.en_US
dc.identifier.citedreferenceMahoney, S. H., L. M. Wallace, M. Miyoshi, P. Villamor, R. S. J. Sparks, and T. Hasenaka ( 2011 ), Volcano‐tectonic interactions during rapid plate‐boundary evolution in the Kyushu region, SW Japan, Geol. Soc. Am. Bull., 123, 2201 – 2223.en_US
dc.identifier.citedreferenceMartin, H., R. H. Smithies, R. Raap, J.‐F. Moyden, and D. Champion ( 2005 ), An overview of adakite, tonalite‐trondhjemite‐granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution, Lithos, 79, 1 – 24.en_US
dc.identifier.citedreferenceMaruyama, S., A. Hasegawa, M. Santosh, T. Kogiso, S. Omori, H. Nakamura, K. Kawai, and D. Zhao ( 2009 ), The dynamics of big mantle wedge, magma factory, and metamorphic–metasomatic factory in subduction zones, Gondowana Res., 16, 414 – 430.en_US
dc.identifier.citedreferenceMatsumoto, I., Y. Sawada, and H. Kagami ( 1994 ), Rb‐Sr isochron ages of Cretaceous Kisa Volcanics and granitoids in the central Chugoku district, Southwest Japan, and their geological significance, J. Geol. Soc. Jpn., 100, 399 – 407.en_US
dc.identifier.citedreferenceMerzbacher, C., and D. H. Eggler ( 1984 ), A magmatic geohygrometer: Application to Mount St. Helens and other dacitic magmas, Geology, 12, 587 – 590.en_US
dc.identifier.citedreferenceMiyake, Y. ( 1994 ), Geochemistry of igneous rocks of Shimane peninsula, formed within a Miocene back‐arc rifting zone at the Japan Sea margin, Geochem. J., 28, 451 – 472.en_US
dc.identifier.citedreferenceMorris, P. A. ( 1995 ), Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan, Geology, 23, 395 – 398.en_US
dc.identifier.citedreferenceMoyen, J.‐F. ( 2009 ), High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature,” Lithos, 112, 556 – 574.en_US
dc.identifier.citedreferenceMoyen, J.‐F., and G. Stevens ( 2006 ), Experimental constraints on TTG petrogenesys: Implications for Archean geodynamics, in Archean Geodynamics and Environments, edited by K. Benn et al., pp. 149 – 175, AGU, Washington, D. C., doi: 10.1029/164GM11.en_US
dc.identifier.citedreferenceMüntener, O., P. B. Kelemen, and T. L. Grove ( 2001 ), The role of H 2 O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxinites: An experimental study, Contrib. Mineral. Petrol., 141, 643 – 658.en_US
dc.identifier.citedreferenceNagao, T., N. Fujibayashi, H. Kagami, K. Tazaki, and S. Takada ( 1990 ), Origin of the Sr‐rich Cenozoic alkali basalts in Yokota area, Chugoku Mountains, Southwest Japan, J. Geol. Soc. Jpn., 96, 795 – 803.en_US
dc.identifier.citedreferenceNakajima, J., and A. Hasegawa ( 2007 ), Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism, J. Geophys. Res., 112, B08306, doi: 10.1029/2006JB004770.en_US
dc.identifier.citedreferenceObara, K. ( 2002 ), Nonvolcanic deep tremor associated with subduction in southwest Japan, Science, 296, 1679 – 1681.en_US
dc.identifier.citedreferenceOkino, K., Y. Shimakawa, and S. Nagaoka ( 1994 ), Evolution of the Shikoku Basin, J. Geomagn. Geoelectr., 46, 463 – 479.en_US
dc.identifier.citedreferenceOmori, S., S. Kita, S. Maruyama, and M. Santosh ( 2009 ), Pressure‐temperature conditions of ongoing regional metamorphism beneath the Japanese Islands, Godwana Res., 16, 458 – 469.en_US
dc.identifier.citedreferenceOzawa, K. ( 2001 ), Mass balance equations for open magmatic systems: Trace element behavior and its application to open system melting in the upper mantle, J. Geophys. Res., 106 ( B7 ), 13,407 – 13,434.en_US
dc.identifier.citedreferenceOzawa, K., and N. Shimizu ( 1995 ), Open‐system melting in the upper mantle: Constraints from the Hayachine‐Miyamori ophiolite, northeastern Japan, J. Geophys. Res., 100 ( B11 ), 22,315 – 22,335.en_US
dc.identifier.citedreferencePeacock, S. M., and K. Wang ( 1999 ), Seismic consequence of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan, Science, 286, 937 – 939.en_US
dc.identifier.citedreferencePearce, J. A., and I. J. Parkinson ( 1993 ), Trace element models for mantle melting: Application to volcanic arc petrogenesis, in Magmatic Processes and Plate Tectonics, Geol. Soc. Spec. Publ., 76, edited by H. M. Prichard et al., pp. 373 – 403. The Geological Society, Piccadilly, London.en_US
dc.identifier.citedreferencePearce, J. A., P. D. Kempton, G. M. Nowell, and S. R. Noble ( 1999 ), Hf‐Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific Arc‐Basin systems, J. Petrol., 40, 1579 – 1611.en_US
dc.identifier.citedreferencePilet, S., M. L. Baker, O. Müntener, and E. M. Stolper ( 2011 ), Monte Carlo simulations of metamorphic enrichment in the lithosphere and implicaitons for the source of alkaline basalts, J. Petrol., 52, 1415 – 1442.en_US
dc.identifier.citedreferencePlank, T., L. B. Cooper, and C. E. Manning ( 2009 ), Emerging geothermometers for estimating slab surface temperatures, Nat. Geosci., 2, 611 – 615.en_US
dc.identifier.citedreferencePlank, T., K. A. Kelley, M. M. Zimmer, E. H. Hauri, and P. J. Wallace ( 2013 ), Why do mafic arc magmas contain ∼4 wt% water on average?, Earth Planet. Sci. Lett., 364, 168 – 179.en_US
dc.identifier.citedreferencePouclet, A., J.‐S. Lee, P. Vidal, B. Cousens, and H. Bellon ( 1995 ), Cretaceous to Cenozoic volcanism in South Korea and in the Sea of Japan: Magmatic constraints on the opening of the back‐arc basin, in Volcanism Associated with Extension at Consuming Plate Margins, Geol. Soc. Spec. Publ., 81, edited by J. L. Smellie, pp. 169 – 191. The Geological Society, Piccadilly, London.en_US
dc.identifier.citedreferenceResanov, A. I., H. Kagami, and S. Iizumi ( 1994 ), Rb‐Sr isochron ages of Cretaceous—Paleogene granitoid rocks in the central part of the Chugoku district, Southwest Japan, J. Geol. Soc. Jpn., 100, 651 – 657.en_US
dc.identifier.citedreferenceRollinson, H. ( 1993 ), Using Geochemical Data: Evaluation, Presentation, Interpretation, Addison‐Wesley, Essex, U. K.en_US
dc.identifier.citedreferenceRoser, B. P., J.‐I. Kimura, and K. Hisatomi ( 2000 ), Whole‐rock elemental abundances in sandstones and mudrocks from the Tanabe Group, Kii Peninsula, Japan., Geosci. Rep. Shimane Univ., 19, 101 – 112.en_US
dc.identifier.citedreferenceSakuyama, M. ( 1984 ), Magma mixing and magma plumbing systems in island arcs, Bull. Volcanol., 47, 685 – 703.en_US
dc.identifier.citedreferenceSano, Y., A. Kameda, N. Takahata, J. Yamamoto, and J. Nakajima ( 2009 ), Tracing extinct spreading center in SW Japan by helium‐3 emanation, Chem. Geol., 266, 50 – 56.en_US
dc.identifier.citedreferenceSato, D., I. Matsumoto, and A. Kamei ( 2011 ), Petrology and bulk rock chemical composition of the Wakurayama Dacite from Matsue City, Shimane Prefecture, sowthwest Japan, J. Geol. Soc. Jpn., 117 ( 8 ), 439 – 450.en_US
dc.identifier.citedreferenceSato, M., K. Shuto, M. Uematsu, T. Takahashi, M. Ayabe, K. Takanashi, H. Ishimoto, and H. Kawabata ( 2013 ), Origin of Late Oligocene to Middle Miocene adakitic andesites, high magnesian andesites and basalts from the back‐arc margin of the SW and NE Japan arcs, J. Petrol., 54, 481 – 524.en_US
dc.identifier.citedreferenceSchmidt, M. W., D. Vielzeuf, and E. Auzanneau ( 2004 ), Melting and dissolution of subducting crust at high pressures: The key role of white mica, Earth Planet. Sci. Lett., 228, doi: 10.1016/j.epsl.2004.1009.1020.en_US
dc.identifier.citedreferenceSeno, T., and Maruyama, S. ( 1984 ), Paleogeographic reconstructions and origin of the Philippine Sea, Tectonophysics, 102, 53 – 84.en_US
dc.identifier.citedreferenceShaw, D. M. ( 2000 ), Continuous (dynamic) melting theoly revisited, Can. Mineral., 38, 1041 – 1063.en_US
dc.identifier.citedreferenceShimoda, G., Y. Tatsumi, S. Nohda, K. Ishizaka, and B. M. Jahn ( 1998 ), Setouchi high‐Mg andesites revisited: Geochemical evidence for melting of subducting sediments, Earth Planet. Sci. Lett., 160, 479 – 492.en_US
dc.identifier.citedreferenceShinjoe, H. ( 1997 ), Origin of the granodiolite in the forearc region of southwest Japan: Melting of the Shimanto accretionary prism, Chem. Geol., 134, 237 – 255.en_US
dc.identifier.citedreferenceSisson, T. W., J.‐I. Kimura, and M. L. Coombs ( 2009 ), Basanite‐bepherinite suite from early Kilauea: Carbonated melts of phlogopite‐garnet peridotite at Hawaii's leading magmatic edge, Contrib. Mineral. Petrol., 158, 803 – 829.en_US
dc.identifier.citedreferenceSkora, S., and J. Blundy ( 2010 ), High‐pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism, J. Petrol., 51, 2211 – 2243.en_US
dc.identifier.citedreferenceSkora, S., and J. Blundy ( 2012 ), Monazite solubility in hydrous silicic melts at high pressure conditions relevant to subduction zone metamorphism, Earth Planet. Sci. Lett., 321–322, 104 – 114.en_US
dc.identifier.citedreferenceStaudigel, H., T. Plank, B. White, and H.‐U. Schmincke ( 1996 ), Geochemical fluxes during seafloor alteration of the basaltic upper crust: DSDP Sites 417 and 418, in Subduction Top to Bottom, edited by G. E. Bebout et al., AGU, Washington, D. C., pp. 19 – 38, doi: 10.1029/GM096p0019.en_US
dc.identifier.citedreferenceStevenson, R. K., and P. J. Patchett ( 1990 ), Implications for the evolution of continental crust from Hf isotope systematics of Archean de‐trital zircons, Geochim. Cosmochim. Acta, 54, 1683 – 1697.en_US
dc.identifier.citedreferenceStraub, S. M., A. B. LaGatta, A. L. M.‐D. Pozzo, and C. H. Langmuir ( 2008 ), Evidence from high‐Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt, Geochem. Geophy. Geosyst., 9, Q03007, doi: 10.1029/2007GC001583.en_US
dc.identifier.citedreferenceStraub, S. M., A. Gomez‐Tuen, F. M. Stuart, G. F. Zellmer, R. Espinasa‐Perena, Y. Cai, and Y. Iizuka ( 2011 ), Formation of hybrid arc andesites beneath thick continental crust, Earth Planet. Sci. Lett., 303, 337 – 347.en_US
dc.identifier.citedreferenceStreck, M. J., W. P. Leeman, and J. Chesley ( 2007 ), High‐magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt, Geology, 35, 351 – 354.en_US
dc.identifier.citedreferenceSun, C.‐H., R. J. Stern, T. Yoshida, and J.‐I. Kimura ( 1998 ), Fukutoku‐oka‐no‐ba volcano: A new perspective on the alkalic volcano province in the Izu‐Bonin‐Mariana arc, Island Arc, 7, 732 – 442.en_US
dc.identifier.citedreferenceSun, S.‐s., and W. F. McDonough ( 1989 ), Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes., in Magmatism in the Ocean Basins, Geol. Soc., Spec. Publ., 42, edited by A. D. Saunders and M. J. Norry, pp. 313 – 345, The Geological Society, Piccadilly, London.en_US
dc.identifier.citedreferenceSyracuse, E. M., P. E. v. Keken, and G. A. Abers ( 2010 ), The global range of subduction zone thermal models, Phys. Earth Planet. Inter., doi: 10.1016/j.pepi.2010.1002.1004.en_US
dc.identifier.citedreferenceTakagi, T., and H. Kagami ( 1995 ), Rb‐Sr isochron ages and initial Sr isotope ratios of Ukan granodiorite and Kayo granite, central Okayama prefecture, southwest Japan, Bull. Geol. Surv. Jpn., 46, 219 – 224.en_US
dc.identifier.citedreferenceTamaki, K., K. Suyehiro, J. Allan, J. C. Ingle, and K. A. Pisciotto ( 1992 ), Tectonic synthesis and implications of Japan sea ODP Drilling, in Proceedings of Ocean Drilling Program, Scientific Results, edited by K. Tamaki et al., pp. 1333 – 1348, Ocean Drill. Prog., College Station, Tex.en_US
dc.identifier.citedreferenceTamura, Y., H. Yuhara, and T. Ishii ( 2000 ), Primary arc basalts from Daisen volcano, Japan: Equilibrium crystal fractionation versus disequilibrium fractionation during supercooring, J. Petrol., 41, 431 – 448.en_US
dc.identifier.citedreferenceTamura, Y., M. Yuhara, T. Ishii, N. Irino, and H. Shukuno ( 2003 ), Andesites and dacites from Daisen volcano, Japan: Partial‐to‐total remelting of an andesitic magma body, J. Petrol., 44, 2243 – 2260.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.