Show simple item record

Quantification of cytosolic plasmid DNA degradation using high‐throughput sequencing: implications for gene delivery

dc.contributor.authorRattan, Rahulen_US
dc.contributor.authorBielinska, Anna U.en_US
dc.contributor.authorBanaszak Holl, Mark M.en_US
dc.date.accessioned2014-05-23T15:59:45Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationRattan, Rahul; Bielinska, Anna U.; Banaszak Holl, Mark M. (2014). "Quantification of cytosolic plasmid DNA degradation using high‐throughput sequencing: implications for gene delivery." The Journal of Gene Medicine 16(3-4): 75-83.en_US
dc.identifier.issn1099-498Xen_US
dc.identifier.issn1521-2254en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106947
dc.description.abstractBackground Although cytosolic DNA degradation plays an important role in decreasing transgene expression, the plasmid degradation pattern remains largely unexplored. Methods Illumina dye sequencing was employed to provide degradation site information for S1 and cytosolic nucleases. S1 nuclease provided a positive control for a comparison between the agarose gel method and sequencing approaches. Results The poly(A) region between the β‐lactamase gene and the cytomegalovirus (CMV) promoter was identified as the most likely cut site for polyplex‐treated cytosol. The second most likely site, at the 5' end of the β‐lactamase gene, was identified by gel electrophoresis and sequencing. Additional sites were detected in the OriC region, the SV40/poly(A) region, the luciferase gene and the CMV promoter. Sequence analysis of plasmid treated with cytosol from control cells showed the greatest cut activity in the OriC region, the β‐lactamase gene and the poly(A) region following the luciferase gene. Additional regions of cut activity include the SV40 promoter and the β‐lactamase poly(A) termination sequence. Both cytosolic nucleases and the S1 nuclease showed substantial activity at the bacterial origin of replication ( OriC ). Conclusions High‐throughput plasmid sequencing revealed regions of the luciferase plasmid DNA sequence that are sensitive to cytosolic nuclease degradation. This provides new targets for improving plasmid and/or polymer design to optimize the likelihood of protein expression. Copyright © 2014 John Wiley & Sons, Ltd.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHeLaen_US
dc.subject.otherBiotechnologyen_US
dc.subject.otherPlasmid Designen_US
dc.subject.otherPlasmid Gene Deliveryen_US
dc.subject.otherPolymer Vectoren_US
dc.titleQuantification of cytosolic plasmid DNA degradation using high‐throughput sequencing: implications for gene deliveryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106947/1/jgm2761.pdf
dc.identifier.doi10.1002/jgm.2761en_US
dc.identifier.sourceThe Journal of Gene Medicineen_US
dc.identifier.citedreferenceRattan R, Vaidyanathan S, Wu G, et al. Polyplex‐induced cytosolic nuclease activation leads to differential transgene expression. Mol Pharm 2013; 10: 3013 – 3022.en_US
dc.identifier.citedreferenceRibeiro SC, Monteiro GA, Prazeres DMF. The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases. J Gene Med 2004; 6: 565 – 573.en_US
dc.identifier.citedreferenceCondreay JP, Witherspoon SM, Clay WC, et al. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 1999; 96: 127 – 132.en_US
dc.identifier.citedreferenceMeyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010; 2010: pdb.prot5448.en_US
dc.identifier.citedreferenceHoffman EK, Trusko SP, Murphy M, et al. An S1 nuclease‐sensitive homopurine/homopyrimidine domain in the c‐Ki‐ras promoter interacts with a nuclease factor. Proc Natl Acad Sci U S A 1990; 87: 2705 – 2709.en_US
dc.identifier.citedreferenceVarkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Control Release 2011; 151: 220 – 228.en_US
dc.identifier.citedreferenceCho YW, Kim J‐D, Park K. Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 2003; 55: 721 – 734.en_US
dc.identifier.citedreferenceLechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non‐viral gene transfer. Adv Drug Deliv Rev 2005; 57: 755 – 767.en_US
dc.identifier.citedreferenceDean D, Strong D, Zimmer W. Nuclear entry of nonviral vectors. Gene Ther 2005; 12: 881 – 890.en_US
dc.identifier.citedreferenceLechardeur D, Sohn KJ, Haardt M, et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 1999; 4: 482 – 497.en_US
dc.identifier.citedreferencePollard H, Toumaniantz G, Amos J‐L, et al. Ca 2+ ‐sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 2001; 3: 153 – 164.en_US
dc.identifier.citedreferenceAzzoni AR, Ribeiro SC, Monteiro GA, et al. The impact of polyadenylation signals on plasmid nuclease‐resistance and transgene expression. J Gene Med 2007; 9: 392 – 402.en_US
dc.identifier.citedreferenceNasheuer H‐P, Smith R, Bauerschmidt C, et al. Initiation of eukaryotic DNA replication: regulation and mechanisms. Prog Nucleic Acid Res Mol Biol 2002; 72: 41 – 93.en_US
dc.identifier.citedreferenceMott ML, Berger JM. DNA replication initiation: mechanisms and regulation in bacteria. Nature Rev Microbiol 2007; 5: 343 – 354.en_US
dc.identifier.citedreferenceRao BS. Regulation of DNA replication by homopurine/homopyrimidine sequences. Mol Cell Biochem 1996; 2: 163 – 168.en_US
dc.identifier.citedreferenceSolymosy F, Fedorcsák I, Gulyás A, et al. A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissues. Eur J Biochem 1968; 5: 520 – 527.en_US
dc.identifier.citedreferenceHallick RB, Chelm BK, Gray PW, et al. Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res 1977; 4: 3055 – 3064.en_US
dc.identifier.citedreferenceScholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 2012; 161: 554 – 565.en_US
dc.identifier.citedreferenceHess P, Cooper D. Impact of pharmacogenomics on the clinical laboratory. Mol Diagnosis 1999; 4: 289 – 298.en_US
dc.identifier.citedreferenceLiu C, Zhang N. Nanoparticles in gene therapy principles, prospects, and challenges. Prog Mol Biol Transl Sci 2011; 104: 509 – 662.en_US
dc.identifier.citedreferenceLechardeur D, Lukas GL. Intracellular barriers to non‐viral gene transfer. Curr Gene Ther 2002; 2: 183 – 194.en_US
dc.identifier.citedreferenceSmedt SCD, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res 2000; 17: 113 – 126.en_US
dc.identifier.citedreferenceBenns JM, Choi J‐S, Mahato RI, et al. pH‐sensitive cationic polymer gene delivery vehicle:   N‐Ac‐poly(L‐histidine)‐graft‐poly(L‐lysine) comb shaped polymer. Bioconjug Chem 2000; 11: 637 – 645.en_US
dc.identifier.citedreferenceLuo D, Saltzman WM. Synthetic DNA delivery systems. Nature Biotechnol 2000; 18: 33 – 37.en_US
dc.identifier.citedreferenceLungwitz U, Breunig M, Blunk T, et al. Polyethylenimine‐based non‐viral gene delivery systems. Eur J Pharm Biopharm 2005; 60: 247 – 266.en_US
dc.identifier.citedreferenceHong S, Rattan R, Majoros IJ, et al. The role of ganglioside GM1 in cellular internalization mechanisms of poly(amidoamine) dendrimers. Bioconjugate Chem 2009; 20: 1503 – 1513.en_US
dc.identifier.citedreferenceQi R, Mullen DG, James R, Baker J, et al. The mechanism of polyplexes internalization into cells: testing the GM1/caveolin‐1‐mediated lipid raft mediated endocytosis pathway. Mol Pharm 2010; 7: 267 – 279.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.