Show simple item record

Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model

dc.contributor.authorCha, YoonKyungen_US
dc.contributor.authorPark, Seok Soonen_US
dc.contributor.authorKim, Kyunghyunen_US
dc.contributor.authorByeon, Myeongseopen_US
dc.contributor.authorStow, Craig A.en_US
dc.date.accessioned2014-05-23T15:59:49Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationCha, YoonKyung; Park, Seok Soon; Kim, Kyunghyun; Byeon, Myeongseop; Stow, Craig A. (2014). "Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model." Water Resources Research 50(3): 2518-2532.en_US
dc.identifier.issn0043-1397en_US
dc.identifier.issn1944-7973en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106958
dc.description.abstractThere have been increasing reports of harmful algal blooms (HABs) worldwide. However, the factors that influence cyanobacteria dominance and HAB formation can be site‐specific and idiosyncratic, making prediction challenging. The drivers of cyanobacteria blooms in Lake Paldang, South Korea, the summer climate of which is strongly affected by the East Asian monsoon, may differ from those in well‐studied North American lakes. Using the observational data sampled during the growing season in 2007–2011, a Bayesian hurdle Poisson model was developed to predict cyanobacteria abundance in the lake. The model allowed cyanobacteria absence (zero count) and nonzero cyanobacteria counts to be modeled as functions of different environmental factors. The model predictions demonstrated that the principal factor that determines the success of cyanobacteria was temperature. Combined with high temperature, increased residence time indicated by low outflow rates appeared to increase the probability of cyanobacteria occurrence. A stable water column, represented by low suspended solids, and high temperature were the requirements for high abundance of cyanobacteria. Our model results had management implications; the model can be used to forecast cyanobacteria watch or alert levels probabilistically and develop mitigation strategies of cyanobacteria blooms. Key Points A Bayesian hurdle Poisson model predicted cyanobacteria abundance Temperature, flushing rate, and water column stability were key factors The model forecasted cyanobacteria watch and alert levels probabilisticallyen_US
dc.publisherR Found. for Stat. Computen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBayesian Hurdle Poisson Regressionen_US
dc.subject.otherAsian Monsoonen_US
dc.subject.otherLake Paldangen_US
dc.subject.otherTemperatureen_US
dc.subject.otherCyanobacteriaen_US
dc.titleProbabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106958/1/wrcr20820.pdf
dc.identifier.doi10.1002/2013WR014372en_US
dc.identifier.sourceWater Resources Researchen_US
dc.identifier.citedreferencePhillips, G., A. Kelly, J.‐A. Pitt, R. Sanderson, and E. Taylor ( 2005 ), The recovery of a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus, Freshwater Biol., 50 ( 10 ), 1628 – 1638.en_US
dc.identifier.citedreferencePaerl, H. W., N. S. Hall, and E. S. Calandrino ( 2011a ), Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic‐induced change, Sci. Total Environ., 409 ( 10 ), 1739 – 1745.en_US
dc.identifier.citedreferencePaerl, H. W., H. Xu, M. J. McCarthy, G. Zhu, B. Qin, Y. Li, and W. S. Gardner ( 2011b ), Controlling harmful cyanobacterial blooms in a hyper‐eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy, Water Res., 45 ( 5 ), 1973 – 1983.en_US
dc.identifier.citedreferencePark, H.‐K., H.‐J. Lee, E.‐K. Kim, and D.‐I. Jung ( 2005 ), Characteristics of algal abundance and statistical analysis of environmental factors in Lake Paldang, Korean Soc. Water Qual., 21 ( 6 ), 584 – 594.en_US
dc.identifier.citedreferencePlummer, M. ( 2008 ), Penalized loss functions for Bayesian model comparison, Biostatistics, 9 ( 3 ), 523 – 539.en_US
dc.identifier.citedreferenceR Development Core Team ( 2012 ), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna.en_US
dc.identifier.citedreferenceReckhow, K. H., and S. C. Chapra ( 1983 ), Engineering Approaches for Lake Management, Volume 1: Data Analysis and Empirical Modeling, Butterworths, Boston, Mass.en_US
dc.identifier.citedreferenceReynolds, C. S. ( 2006 ), Ecology of Phytoplankton, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceRomo, S., J. Soria, F. FernÁNdez, Y. Ouahid, and Á. BarÓN‐SolÁ ( 2013 ), Water residence time and the dynamics of toxic cyanobacteria, Freshwater Biol., 58 ( 3 ), 513 – 522.en_US
dc.identifier.citedreferenceScheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur, and E. H. v. Nes ( 1997 ), On the dominance of filamentous cyanobacteria in shallow, turbid Lakes, Ecology, 78 ( 1 ), 272 – 282.en_US
dc.identifier.citedreferenceSerizawa, H., T. Amemiya, A. Rossberg, and K. Itoh ( 2008 ), Computer simulations of seasonal outbreak and diurnal vertical migration of cyanobacteria, Limnology, 9 ( 3 ), 185 – 194.en_US
dc.identifier.citedreferenceSmith, V. H. ( 1983 ), Low nitrogen to phosphorus ratios favor dominance by blue‐green algae in lake phytoplankton, Science, 221 ( 4611 ), 669 – 671.en_US
dc.identifier.citedreferenceSmith, V. H. ( 1986 ), Light and nutrient effects on the relative biomass of blue‐green algae in lake phytoplankton, Can. J. Fish. Aquat. Sci., 43 ( 1 ), 148 – 153.en_US
dc.identifier.citedreferenceSoranno, P. A. ( 1997 ), Factors affecting the timing of surface scums and epilimnetic blooms of blue‐green algae in a eutrophic lake, Can. J. Fish. Aquat. Sci., 54, 1965 – 1975.en_US
dc.identifier.citedreferenceStumpf, R. P., T. T. Wynne, D. B. Baker, and G. L. Fahnenstiel ( 2012 ), Interannual variability of cyanobacterial blooms in Lake Erie, PloS One, 7 ( 8 ), e42444.en_US
dc.identifier.citedreferenceVanderploeg, H. A., T. H. Johengen, and J. R. Liebig ( 2009 ), Feedback between zebra mussel selective feeding and algal composition affects mussel condition: Did the regime changer pay a price for its success?, Freshwater Biol., 54 ( 1 ), 47 – 63.en_US
dc.identifier.citedreferenceVisser, P., B. A. S. Ibelings, B. Van Der Veer, J. A. N. Koedood, and R. Mur ( 1996 ), Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands, Freshwater Biol., 36 ( 2 ), 435 – 450.en_US
dc.identifier.citedreferenceVisser, P. M., B. W. Ibelings, and L. R. Mur ( 1995 ), Autunmal sedimentation of Microcystis spp. as result of an increase in carbohydrate ballast at reduced temperature, J. Plankton Res., 17 ( 5 ), 919 – 933.en_US
dc.identifier.citedreferenceWagner, C., and R. Adrian ( 2009 ), Cyanobacteria dominance: Quantifying the effects of climate change, Limnol. Oceanogr., 54 ( 6 ), 2460 – 2468.en_US
dc.identifier.citedreferenceWhite, G. C., and R. E. Bennetts ( 1996 ), Analysis of frequency count data using the negative binomial distribution, Ecology, 77 ( 8 ), 2549 – 2557.en_US
dc.identifier.citedreferenceWood, S. A., M. J. Prentice, K. Smith, and D. P. Hamilton ( 2010 ), Low dissolved inorganic nitrogen and increased heterocyte frequency: Precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir, J. Plankton Res., 32 ( 9 ), 1315 – 1325.en_US
dc.identifier.citedreferenceWynne, T. T., R. P. Stumpf, M. C. Tomlinson, D. J. Schwab, G. Y. Watabayashi, and J. D. Christensen ( 2011 ), Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model, Ecol. Appl., 21 ( 7 ), 2709 – 2721.en_US
dc.identifier.citedreferenceWynne, T. T., R. P. Stumpf, and T. O. Briggs ( 2013 ), Comparing MODIS and MERIS spectral shapes for cyanobacterial bloom detection, Int. J. Remote Sens., 34, 6668 – 6678.en_US
dc.identifier.citedreferenceZhang, H., W. Hu, K. Gu, Q. Li, D. Zheng, and S. Zhai ( 2013 ), An improved ecological model and software for short‐term algal bloom forecasting, Environ. Modell. Software, 48, 152 – 162.en_US
dc.identifier.citedreferenceAhn, C.‐Y., A.‐S. Chung, and H.‐M. Oh ( 2002 ), Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir, Hydrobiologia, 474 ( 1–3 ), 117 – 124.en_US
dc.identifier.citedreferenceAhn, C.‐Y., H.‐M. Oh, and Y.‐S. Park ( 2011 ), Evaluation of environmental factors on cyanobacteria bloom in eutrophic reservoir using artificial neural networks, J. Phycol., 47 ( 3 ), 495 – 504.en_US
dc.identifier.citedreferenceAn, K.‐G., and J. R. Jones ( 2000a ), Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon, Hydrobiologia, 432, 37 – 48.en_US
dc.identifier.citedreferenceAn, K.‐G., and J. R. Jones ( 2000b ), Temporal and spatial patterns in salinity and suspended solids in a reservoir influenced by the Asian monsoon, Hydrobiologia, 436 ( 1–3 ), 179 – 189.en_US
dc.identifier.citedreferenceBeaulieu, M., F. Pick, and I. Gregory‐Eaves ( 2013 ), Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set, Limnol. Oceanogr., 58 ( 5 ), 1736 – 1746.en_US
dc.identifier.citedreferenceBrookes, J. D., and C. C. Carey ( 2011 ), Resilience to blooms, Science, 334 ( 6052 ), 46 – 47.en_US
dc.identifier.citedreferenceCarey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton, and J. D. Brookes ( 2012 ), Eco‐physiological adaptations that favour freshwater cyanobacteria in a changing climate, Water Res., 46 ( 5 ), 1394 – 1407.en_US
dc.identifier.citedreferenceCarmichael, W. W., S. Azevedo, J. S. An, R. J. R. Molica, E. M. Jochimsen, S. Lau, K. L. Rinehart, G. R. Shaw, and G. K. Eaglesham ( 2001 ), Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins, Environ. Health Perspect., 109 ( 7 ), 663 – 668.en_US
dc.identifier.citedreferenceCarpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith ( 1998 ), Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 8 ( 3 ), 559 – 568.en_US
dc.identifier.citedreferenceCodd, G. A., L. F. Morrison, and J. S. Metcalf ( 2005 ), Cyanobacterial toxins: Risk management for health protection, Toxicol. Appl. Pharmacol., 203, 264 – 272.en_US
dc.identifier.citedreferenceDavis, T. W., D. L. Berry, G. L. Boyer, and C. J. Gobler ( 2009 ), The effects of temperature and nutrients on the growth and dynamics of toxic and non‐toxic strains of Microcystis during cyanobacteria blooms, Harmful Algae, 8 ( 5 ), 715 – 725.en_US
dc.identifier.citedreferenceDowning, J. A., S. B. Watson, and E. McCauley ( 2001 ), Predicting cyanobacteria dominance in lakes, Can. J. Fish. Aquat. Sci., 58 ( 10 ), 1905 – 1908.en_US
dc.identifier.citedreferenceDyble, J., G. L. Fahnenstiel, R. W. Litaker, D. F. Millie, and P. A. Tester ( 2008 ), Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes, Environ. Toxicol., 23 ( 4 ), 507 – 516.en_US
dc.identifier.citedreferenceElliott, J. A. ( 2010 ), The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature, Global Change Biol., 16 ( 2 ), 864 – 876.en_US
dc.identifier.citedreferenceElliott, J. A. ( 2012 ), Is the future blue‐green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria, Water Res., 46 ( 5 ), 1364 – 1371.en_US
dc.identifier.citedreferenceFreeman, K. S. ( 2011 ), Forecasts aid HABs response, Environ. Health Perspect., 119 ( 12 ), a510.en_US
dc.identifier.citedreferenceGhosh, S. K., P. Mukhopadhyay, and J.‐C. Lu ( 2006 ), Bayesian analysis of zero‐inflated regression models, J. Stat. Plann. Inference, 136 ( 4 ), 1360 – 1375.en_US
dc.identifier.citedreferenceGlibert, P. M., J. Allen, A. Bouwman, C. W. Brown, K. J. Flynn, A. J. Lewitus, and C. J. Madden ( 2010 ), Modeling of HABs and eutrophication: Status, advances, challenges, J. Mar. Syst., 83 ( 3 ), 262 – 275.en_US
dc.identifier.citedreferenceGraham, J. L., J. R. Jones, S. B. Jones, J. A. Downing, and T. E. Clevenger ( 2004 ), Environmental factors influencing microcystin distribution and concentration in the Midwestern United States, Water Res., 38 ( 20 ), 4395 – 4404.en_US
dc.identifier.citedreferenceHamilton, G., R. McVinish, and K. Mengersen ( 2009 ), Bayesian model averaging for harmful algal bloom prediction, Ecol. Appl., 19 ( 7 ), 1805 – 1814.en_US
dc.identifier.citedreferenceHeilbron, D. C. ( 1994 ), Zero‐altered and other regression models for count data with added zeros, Biometrical. J., 36 ( 5 ), 531 – 547.en_US
dc.identifier.citedreferenceHu, M.‐C., M. Pavlicova, and E. V. Nunes ( 2011 ), Zero‐inflated and hurdle models of count data with extra zeros: Examples from an HIV‐risk reduction intervention trial, Am. J. Drug Alcohol Abuse, 37 ( 5 ), 367 – 375.en_US
dc.identifier.citedreferenceJöhnk, K. D., J. E. F. Huisman, J. Sharples, B. E. N. Sommeijer, P. M. Visser, and J. M. Stroom ( 2008 ), Summer heatwaves promote blooms of harmful cyanobacteria, Global Change Biol., 14 ( 3 ), 495 – 512.en_US
dc.identifier.citedreferenceJones, I. A. N., G. George, and C. Reynolds ( 2005 ), Quantifying effects of phytoplankton on the heat budgets of two large limnetic enclosures, Freshwater Biol., 50 ( 7 ), 1239 – 1247.en_US
dc.identifier.citedreferenceJung, Y. ( 2009 ), Management plan for the control of eutrophication in Lake Paldang, South Korea, Policy Res. Rep. 2009‐43, Gyeonggi Res. Inst., Suwon, South Korea.en_US
dc.identifier.citedreferenceKim, J., M.‐S. Han, W. Jheong, and J. Park ( 2005 ), Correlation between phytoplankton dynamics and water quality in Paldang Reservoir, Korean J. Limnol., 38 ( 2 ), 217 – 224.en_US
dc.identifier.citedreferenceKim, J., S. Lee, H. Bang, and S. Hwang ( 2009 ), Characteristics of algae occurrence in Lake Paldang, J. Korean Soc. Environ. Eng., 31 ( 5 ), 325 – 331.en_US
dc.identifier.citedreferenceKnoll, L. B., O. Sarnelle, S. K. Hamilton, C. E. H. Kissman, A. E. Wilson, J. B. Rose, and M. R. Morgan ( 2008 ), Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low‐nutrient lakes, Can. J. Fish. Aquat. Sci., 65 ( 3 ), 448 – 455.en_US
dc.identifier.citedreferenceKomárek, J. ( 1991 ), A review of water‐bloom forming Microcystis species, with regard to populations from Japan, Algol. Stud./Archiv für Hydrobiologie, 64, 115 – 127.en_US
dc.identifier.citedreferenceKosten, S., et al. ( 2012 ), Warmer climates boost cyanobacterial dominance in shallow lakes, Global Change Biol., 18 ( 1 ), 118 – 126.en_US
dc.identifier.citedreferenceLambert, D. ( 1992 ), Zero‐inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34 ( 1 ), 1 – 14.en_US
dc.identifier.citedreferenceLevine, S. N., and D. W. Schindler ( 1999 ), Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada, Can. J. Fish. Aquat. Sci., 56 ( 3 ), 451 – 466.en_US
dc.identifier.citedreferenceLunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter ( 2000 ), WinBUS—A Bayesian modelling framework: Concepts, structure, and extensibility G, Stat. Comput., 10, 325 – 337.en_US
dc.identifier.citedreferenceLürling, M., F. Eshetu, E. J. Faassen, S. Kosten, and V. L. M. Huszar ( 2013 ), Comparison of cyanobacterial and green algal growth rates at different temperatures, Freshwater Biol., 58 ( 3 ), 552 – 559.en_US
dc.identifier.citedreferenceMarkensten, H., K. Moore, and I. Persson ( 2010 ), Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate, Ecol. Appl., 20 ( 3 ), 752 – 767.en_US
dc.identifier.citedreferenceMartin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. J. Low‐Choy, A. J. Tyre, and H. P. Possingham ( 2005 ), Zero tolerance ecology: improving ecological inference by modelling the source of zero observations, Ecol. Lett., 8 ( 11 ), 1235 – 1246.en_US
dc.identifier.citedreferenceMcQueen, D. J., and D. R. S. Lean ( 1987 ), Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue‐green algae in Lake St. George, Ontario, Can. J. Fish. Aquat. Sci., 44 ( 3 ), 598 – 604.en_US
dc.identifier.citedreferenceMichalak, A. M., et al. ( 2013 ), Record‐setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions, Proc. Natl. Acad. Sci. U. S. A., 110 ( 16 ), 6448 – 6452.en_US
dc.identifier.citedreferenceMillie, D. F., G. R. Weckman, W. A. Young II, J. E. Ivey, H. J. Carrick, and G. L. Fahnenstiel ( 2012 ), Modeling microalgal abundance with artificial neural networks: Demonstration of a heuristic ‘Grey‐Box’ to deconvolve and quantify environmental influences, Environ. Modell. Software, 38, 27 – 39.en_US
dc.identifier.citedreferenceMillie, D. F., G. R. Weckman, W. A. Young II, J. E. Ivey, D. P. Fries, E. Ardjmand, and G. L. Fahnenstiel ( 2013 ), Coastal ‘Big Data’ and nature‐inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric, Estuarine Coastal Shelf Sci., 125, 57 – 67.en_US
dc.identifier.citedreferenceMitrovic, S. M., B. C. Chessman, L. C. Bowling, and R. H. Cooke ( 2006 ), Modelling suppression of cyanobacterial blooms by flow management in a lowland river, River Res. Appl., 22 ( 1 ), 109 – 114.en_US
dc.identifier.citedreferenceMullahy, J. ( 1986 ), Specification and testing of some modified count data models, J. Econometrics, 33 ( 3 ), 341 – 365.en_US
dc.identifier.citedreferenceNa, E. H., and S. S. Park ( 2005 ), A hydrodynamic modeling study to determine the optimum water intake location in Lake Paldang, Korea, J. Am. Water Resour. Assoc., 41 ( 6 ), 1315 – 1332.en_US
dc.identifier.citedreferenceNa, E. H., and S. S. Park ( 2006 ), A hydrodynamic and water quality modeling study for spatial and temporal patterns of phytoplankton growth in a stratified lake with buoyant incoming flow, Ecol. Modell., 199, 298 – 314.en_US
dc.identifier.citedreferenceNeelon, B. H., A. J. O'Malley, and S.‐L. T. Normand ( 2010 ), A Bayesian model for repeated measures zero‐inflated count data with application to outpatient psychiatric service use, Stat. Modell., 10 ( 4 ), 421 – 439.en_US
dc.identifier.citedreferenceNeelon, B. H., P. Ghosh, and P. F. Loebs ( 2013 ), A spatial Poisson hurdle model for exploring geographic variation in emergency department visits, J. R. Stat. Soc.: Ser. A, 176 ( 2 ), 389 – 413.en_US
dc.identifier.citedreferenceO'Brien, K. R., D. L. Meyer, A. M. Waite, G. N. Ivey, and D. P. Hamilton ( 2004 ), Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: Laboratory experiments in a grid‐stirred tank, Hydrobiologia, 519 ( 1–3 ), 143 – 152.en_US
dc.identifier.citedreferencePaerl, H. W. ( 1988 ), Nuisance phytoplankton blooms in coastal, estuarine, and inland waters, Limnol. Oceanogr., 33 ( 4 ), 823 – 847.en_US
dc.identifier.citedreferencePaerl, H. W., and J. Huisman ( 2008 ), Blooms like it hot, Science, 320 ( 5872 ), 57 – 58.en_US
dc.identifier.citedreferencePaerl, H. W., and J. T. Scott ( 2010 ), Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms, Environ. Sci. Technol., 44 ( 20 ), 7756 – 7758.en_US
dc.identifier.citedreferencePaerl, H. W., and V. J. Paul ( 2012 ), Climate change: Links to global expansion of harmful cyanobacteria, Water Res., 46 ( 5 ), 1349 – 1363.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.