Show simple item record

Isolation and Characterization of Precise Dye/Dendrimer Ratios

dc.contributor.authorDougherty, Casey A.en_US
dc.contributor.authorFurgal, Joseph C.en_US
dc.contributor.authorVan dongen, Mallory A.en_US
dc.contributor.authorGoodson, Theodoreen_US
dc.contributor.authorBanaszak holl, Mark M.en_US
dc.contributor.authorManono, Janeten_US
dc.contributor.authorDiMaggio, Stassien_US
dc.date.accessioned2014-05-23T15:59:54Z
dc.date.available2015-06-01T15:48:46Zen_US
dc.date.issued2014-04-14en_US
dc.identifier.citationDougherty, Casey A.; Furgal, Joseph C.; Van dongen, Mallory A. ; Goodson, Theodore; Banaszak holl, Mark M. ; Manono, Janet; DiMaggio, Stassi (2014). "Isolation and Characterization of Precise Dye/Dendrimer Ratios." Chemistry â A European Journal 20(16): 4638-4645.en_US
dc.identifier.issn0947-6539en_US
dc.identifier.issn1521-3765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106970
dc.description.abstractFluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6‐carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne “click” ligand, separation into sample containing precisely defined “click” ligand/particle ratios using reverse‐phase high performance liquid chromatography (RP‐HPLC), followed by reaction with excess azide‐functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP‐HPLC. These materials were characterized using 1 H and 19 F NMR spectroscopy, RP‐HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI. High definition : Two approaches for the formation of generation 5 PAMAM samples containing precise dye/dendrimer ratios are presented. The first approach, using direct separation based on dye hydrophobicity, generated a set of TAMRA‐containing dendrimers, and the second, using click chemistry, generated a set of fluorescein‐containing dendrimer (see figure).en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherDendrimersen_US
dc.subject.otherDyes/Pigmentsen_US
dc.subject.otherFluorescent Probesen_US
dc.subject.otherNanostructuresen_US
dc.subject.otherClick Chemistryen_US
dc.titleIsolation and Characterization of Precise Dye/Dendrimer Ratiosen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109‐1055 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, Xavier University, New Orleans, LA 70125 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106970/1/chem_201304854_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106970/2/4638_ftp.pdf
dc.identifier.doi10.1002/chem.201304854en_US
dc.identifier.sourceChemistry – A European Journalen_US
dc.identifier.citedreferenceY. Tang, Y. B. Li, B. Wang, R. Y. Lin, M. van Dongen, D. M. Zurcher, X. Y. Gu, M. M. Banaszak Holl, G. Liu, R. Qi, Mol. Pharm. 2012, 9, 1812 – 1821.en_US
dc.identifier.citedreferenceF. Puntoriero, P. Ceroni, V. Balzani, G. Bergamini, F. Vogtle, J. Am. Chem. Soc. 2007, 129, 10714 – 10719.en_US
dc.identifier.citedreferenceG. Teobaldi, F. Zerbetto, J. Am. Chem. Soc. 2003, 125, 7388 – 7393.en_US
dc.identifier.citedreferenceC. Ornelas, R. Lodescar, A. Durandin, J. W. Canary, R. Pennell, L. F. Liebes, M. Weck, Chem. Eur. J. 2011, 17, 3619 – 3629.en_US
dc.identifier.citedreferenceC. Ornelas, R. Pennell, L. F. Liebes, M. Weck, Org. Lett. 2011, 13, 976 – 979.en_US
dc.identifier.citedreferenceC. Wängler, G. Moldenhauer, R. Saffrich, E. M. Knapp, B. Beijer, M. Schnolzer, B. Wangler, M. Eisenhut, U. Haberkorn, W. Mier, Chem. Eur. J. 2008, 14, 8116 – 8130.en_US
dc.identifier.citedreferenceA. T. Zill, K. Licha, R. Haag, S. C. Zimmerman, New J. Chem. 2012, 36, 419 – 427.en_US
dc.identifier.citedreferenceD. Q. McNerny, J. F. Kukowska‐Latallo, D. G. Mullen, J. M. Wallace, A. M. Desai, R. Shukla, B. H. Huang, M. M. Banaszak Holl, J. R. Baker, Bioconjugate Chem. 2009, 20, 1853 – 1859.en_US
dc.identifier.citedreferenceF. Wang, W. B. Tan, Y. Zhang, X. P. Fan, M. Q. Wang, Nanotechnology 2006, 17, R 1 –R 13.en_US
dc.identifier.citedreferenceJ. R. Baker, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 423 – 429.en_US
dc.identifier.citedreferenceY. Kim, S. H. Kim, M. Tanyeri, J. A. Katzenellenbogen, C. M. Schroeder, Biophys. J. 2013, 104, 1566 – 1575.en_US
dc.identifier.citedreferenceJ. F. Kukowska‐Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, J. R. Baker, Proc. Natl. Acad. Sci. USA 1996, 93, 4897 – 4902.en_US
dc.identifier.citedreferenceJ. Haensler, F. C. Szoka, Bioconjugate Chem. 1993, 4, 372 – 379.en_US
dc.identifier.citedreferenceD. G. Mullen, E. L. Borgmeier, A. Desai, M. A. van Dongen, M. Barash, X. M. Cheng, J. R. Baker, M. M. Banaszak Holl, Chem. Eur. J. 2010, 16, 10675 – 10678.en_US
dc.identifier.citedreferenceM. A. van Dongen, A. Desai, B. G. Orr, J. R. Baker, M. M. Banaszak Holl, Polymer 2013, 54, 4126 – 4133.en_US
dc.identifier.citedreferenceA. Salic, T. J. Mitchison, Proc. Natl. Acad. Sci. USA 2008, 105, 2415 – 2420.en_US
dc.identifier.citedreferenceA. Maciejewski, R. P. Steer, J. Photochem. 1986, 35, 59 – 69.en_US
dc.identifier.citedreferenceO. Varnavski, T. G. Goodson, Chem. Phys. Lett. 2000, 320, 688 – 696.en_US
dc.identifier.citedreferenceH. Lee, T. Ooya, J. Phys. Chem. B 2012, 116, 12263 – 12267.en_US
dc.identifier.citedreferenceM. A. van Dongen, S. Vaidyanathan, M. M. Banaszak Holl, Soft Matter 2013, 9, 11188 – 11196.en_US
dc.identifier.citedreferenceJ. E. Selwyn, J. I. Steinfeld, J. Phys. Chem. 1972, 76, 762 – 774.en_US
dc.identifier.citedreferenceC. V. Kelly, P. R. Leroueil, E. K. Nett, J. M. Wereszczynski, J. R. Baker, B. G. Orr, M. M. Banaszak Holl, I. Andricioaei, J. Phys. Chem. B 2008, 112, 9337 – 9345.en_US
dc.identifier.citedreferenceY. Wang, X. B. Xie, Nano Lett. 2005, 5, 2379 – 2384.en_US
dc.identifier.citedreferenceT. G. Goodson, Acc. Chem. Res. 2005, 38, 99 – 107.en_US
dc.identifier.citedreferenceM. J. Cho, D. H. Choi, P. A. Sullivan, A. J. P. Akelaitis, L. R. Dalton, Prog. Polym. Sci. 2008, 33, 1013 – 1058.en_US
dc.identifier.citedreferenceD. G. Mullen, M. M. Banaszak Holl, Acc. Chem. Res. 2011, 44, 1135 – 1145.en_US
dc.identifier.citedreferenceD. G. Mullen, M. Fang, A. Desai, J. R. Baker, B. G. Orr, M. M. Banaszak Holl, ACS Nano 2010, 4, 657 – 670.en_US
dc.identifier.citedreferenceD. G. Mullen, A. M. Desai, J. N. Waddell, X. M. Cheng, C. V. Kelly, D. Q. McNerny, I. J. Majoros, J. R. Baker, L. M. Sander, B. G. Orr, M. M. Banaszak Holl, Bioconjugate Chem. 2008, 19, 1748 – 1752.en_US
dc.identifier.citedreferenceL. Röglin, E. H. M. Lempens, E. W. Meijer, Angew. Chem. 2011, 123, 106 – 117; Angew. Chem. Int. Ed. 2011, 50, 102 – 112.en_US
dc.identifier.citedreferenceD. G. Mullen, E. L. Borgmeier, M. Fang, D. Q. McNerny, A. Desai, J. R. Baker, B. G. Orr, M. M. Banaszak Holl, Macromolecules 2010, 43, 6577 – 6587.en_US
dc.identifier.citedreferenceI. F. Hakem, A. M. Leech, J. D. Johnson, S. J. Donahue, J. P. Walker, M. R. Bockstaller, J. Am. Chem. Soc. 2010, 132, 16593 – 16598.en_US
dc.identifier.citedreferenceJ. F. G. A. Jansen, E. M. M. de Brabander‐van der Berg, E. W. Meijer, Science 1994, 266, 1226 – 1229.en_US
dc.identifier.citedreferenceA. W. Bosman, H. M. Janssen, E. W. Meijer, Chem. Rev. 1999, 99, 1665 – 1688.en_US
dc.identifier.citedreferenceA. Schenning, E. Peeters, E. W. Meijer, J. Am. Chem. Soc. 2000, 122, 4489 – 4495.en_US
dc.identifier.citedreferenceV. Balzani, P. Ceroni, S. Gestermann, M. Gorka, C. Kauffmann, F. Vogtle, Tetrahedron 2002, 58, 629 – 637.en_US
dc.identifier.citedreferenceS. Jockusch, N. J. Turro, D. A. Tomalia, Macromolecules 1995, 28, 7416 – 7418.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.