Show simple item record

Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission

dc.contributor.authorHaberle, R. M.en_US
dc.contributor.authorGómez‐elvira, J.en_US
dc.contributor.authorTorre Juárez, M.en_US
dc.contributor.authorHarri, A.‐m.en_US
dc.contributor.authorHollingsworth, J. L.en_US
dc.contributor.authorKahanpää, H.en_US
dc.contributor.authorKahre, M. A.en_US
dc.contributor.authorLemmon, M.en_US
dc.contributor.authorMartín‐torres, F. J.en_US
dc.contributor.authorMischna, M.en_US
dc.contributor.authorMoores, J. E.en_US
dc.contributor.authorNewman, C.en_US
dc.contributor.authorRafkin, S. C. R.en_US
dc.contributor.authorRennó, N.en_US
dc.contributor.authorRichardson, M. I.en_US
dc.contributor.authorRodríguez‐manfredi, J. A.en_US
dc.contributor.authorVasavada, A. R.en_US
dc.contributor.authorZorzano‐mier, M.‐p.en_US
dc.date.accessioned2014-05-23T15:59:58Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationHaberle, R. M.; Gómez‐elvira, J. ; Torre Juárez, M. ; Harri, A.‐m. ; Hollingsworth, J. L.; Kahanpää, H. ; Kahre, M. A.; Lemmon, M.; Martín‐torres, F. J. ; Mischna, M.; Moores, J. E.; Newman, C.; Rafkin, S. C. R.; Rennó, N. ; Richardson, M. I.; Rodríguez‐manfredi, J. A. ; Vasavada, A. R.; Zorzano‐mier, M.‐p. (2014). "Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission." Journal of Geophysical Research: Planets 119(3): 440-453.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106979
dc.description.abstractWe provide a preliminary interpretation of the Rover Environmental Monitoring Station (REMS) pressure data from the first 100 Martian solar days (sols) of the Mars Science Laboratory mission. The pressure sensor is performing well and has revealed the existence of phenomena undetected by previous missions that include possible gravity waves excited by evening downslope flows, relatively dust‐free convective vortices analogous in structure to dust devils, and signatures indicative of the circulation induced by Gale Crater and its central mound. Other more familiar phenomena are also present including the thermal tides, generated by daily insolation variations, and the CO 2 cycle, driven by the condensation and sublimation of CO 2 in the polar regions. The amplitude of the thermal tides is several times larger than those seen by other landers primarily because Curiosity is located where eastward and westward tidal modes constructively interfere and also because the crater circulation amplifies the tides to some extent. During the first 100 sols tidal amplitudes generally decline, which we attribute to the waning influence of the Kelvin wave. Toward the end of the 100 sol period, tidal amplitudes abruptly increased in response to a nearby regional dust storm that did not expand to global scales. Tidal phases changed abruptly during the onset of this storm suggesting a change in the interaction between eastward and westward modes. When compared to Viking Lander 2 data, the REMS daily average pressures show no evidence yet for the 1–20 Pa increase expected from the possible loss of CO 2 from the south polar residual cap. Key Points REMS pressure sensor is operating nominally New phenomena have been discovered Familiar phenomena have been detecteden_US
dc.publisherElsevier Academic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPressureen_US
dc.subject.otherREMSen_US
dc.subject.otherMSLen_US
dc.titlePreliminary interpretation of the REMS pressure data from the first 100 sols of the MSL missionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106979/1/jgre20213.pdf
dc.identifier.doi10.1002/2013JE004488en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceRennó, N. O., A. A. Nash, J. Luninne, and J. Murphy ( 2000 ), Martian and terrestrial dust devils: Test of a scaling theory using Pathfinder data, J. Geophys. Res., 105, 1859 – 1866, doi: 10.1029/19999JE001037.en_US
dc.identifier.citedreferenceBlackburn, D. G., K. L. Bryson, V. F. Chevrier, L. A. Roe, and K. G. White ( 2010 ), Sublimation kinetics of CO 2 ice on Mars, Planet. Space Sci., 58, 780 – 791, doi: 10.1016/j.pss.2009.12.004.en_US
dc.identifier.citedreferenceEllehøj, M. D., et al. ( 2010 ), Convective vortices and dust devils at the Phoenix Mars mission landing site, J. Geophys. Res., 115,E00E16, doi: 10.1029/2009JE003413.en_US
dc.identifier.citedreferenceGolombek, M., et al. ( 2012 ), Selection of the Mars Science Laboratory landing site, Space Sci. Rev., 170, 641 – 637, doi: 10.1007/s11214‐012‐9916‐y.en_US
dc.identifier.citedreferenceGómez‐Elvira, J., et al. ( 2012 ), REMS: The environmental sensor suite for the Mars Science Laboratory rover, Space Sci. Rev., 170, 583 – 640, doi: 10.1007/s11214‐012‐9921‐1.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170, 5 – 56, doi: 10.1007/s11214‐012‐9892‐2.en_US
dc.identifier.citedreferenceHaberle, R. M., and M. A. Kahre ( 2010 ), Detecting secular climate change on Mars, Mars, 5, 68 – 75, doi: 10.1555/mars.2010.0003.en_US
dc.identifier.citedreferenceHaberle, R. M., C. B. Leovy, and J. B. Pollack ( 1979 ), A numerical model of the Martian polar cap winds, Icarus, 39, 151 – 183.en_US
dc.identifier.citedreferenceHaberle, R. M., J. B. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, and J. Schaeffer ( 1993 ), Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model, I—The zonal‐mean circulation, J. Geophys. Res., 98, 3093 – 3123.en_US
dc.identifier.citedreferenceHaberle, R. M., et al. ( 2013 ), Meteorological predictions for the first 100 sols of the REMS experiment on MSL, Mars, in press.en_US
dc.identifier.citedreferenceHarri, A.‐M., et al. ( 2014 ), Pressure observations by the Curiosity rover: Initial results, J. Geophys. Res. Planets, 119, doi: 10.1002/2013JE004423.en_US
dc.identifier.citedreferenceHolton, J. R. ( 2004 ), An Introduction to Dynamic Meteorology, 4th ed., Elsevier Academic Press, Burlington, MA.en_US
dc.identifier.citedreferenceHourdin, F., P. L. Van, F. Forget, and O. Talagrand ( 1993 ), Meteorological variability and the annual surface pressure cycle on Mars, J. Atmos. Sci., 50, 3625 – 3640.en_US
dc.identifier.citedreferenceKahanpää, H., et al. ( 2013 ), Convective vortices in Gale Crater, 44th Lunar and Planet. Sci. Conf., paper No. 3095.en_US
dc.identifier.citedreferenceLeovy, C. B., and Y. A. Mintz ( 1969 ), Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 1167 – 1190.en_US
dc.identifier.citedreferenceLeovy, C. B., and R. W. Zurek ( 1979 ), Thermal tides and Martian dust storms: Direct evidence for coupling, J. Geophys. Res., 84, 2956 – 2968.en_US
dc.identifier.citedreferenceMadeleine, J.‐B., F. Forget, E. Millour, T. Navarro, and A. Spiga ( 2012 ), The influence of radiatively active water ice clouds on the Martian climate, Geophys. Res. Lett., 39, L23202, doi: 10.1029/2012GL053564.en_US
dc.identifier.citedreferenceMalin, M. C., M. A. Caplinger, and S. D. Davis ( 2001 ), Observational evidence for an active surface reservoir of solid carbon dioxide on Mars, Science, 294, 2146 – 2148.en_US
dc.identifier.citedreferenceMichaels, T. I., and S. C. R. Rafkin ( 2004 ), Large‐Eddy simulation of atmospheric convection on Mars, Q. J. R. Meteorol. Soc., 130, 1251 – 1274.en_US
dc.identifier.citedreferenceMoores, J. E., et al. ( 2013 ), Constraints on atmospheric water vapor and circulation at gale Crater from the MSL atmospheric monitoring campaign, 44th Lunar and Planet. Sci. Conf., Paper No. 1548.en_US
dc.identifier.citedreferencePaige, D. A., and A. P. Ingersoll ( 1985 ), Annual heat balance of the Martian polar caps: Viking observations, Science, 228, 1160 – 1168, doi: 10.1126/science.228.4704.1160.en_US
dc.identifier.citedreferenceRennó, N. O., M. L. Burkett, and M. P. Larkin ( 1998 ), A simple theory for dust devils, J. Atmos. Sci., 55, 3244 – 3252.en_US
dc.identifier.citedreferenceSchofield, J. T., J. R. Barnes, D. Crisp, R. M. Haberle, S. Larsen, J. A. Magalhães, J. R. Murphy, A. Seiff, and G. Wilson ( 1997 ), The Mars Pathfinder atmospheric structure Investigation/Meteorology (ASI/MET) Experiment, Science, 278, 1752, doi: 10.1126/science.278.5344.1752.en_US
dc.identifier.citedreferenceSpiga, A., and F. Forget ( 2009 ), A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results, J. Geophys. Res., 114, E02009, doi: 10.1029/2008JE003242.en_US
dc.identifier.citedreferenceSpiga, A., F. Forget, B. Dolla, S. Vinatier, R. Melchiorri, P. Drossart, A. Gendrin, J.‐P. Bibring, Y. Langevin, and B. Gondet ( 2007 ), Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps, J. Geophys. Res., 113, E08S16, doi: 10.1029/2006/JE002870.en_US
dc.identifier.citedreferenceThomas, P. C., P. B. James, W. M. Calvin, R. Haberle, and M. C. Malin ( 2009 ), Residual south polar cap of Mars: Stratigraphy, history, and implications of recent changes, Icarus, 203, 352 – 375, doi: 10.1016/j.icarus.2009.05.014.en_US
dc.identifier.citedreferenceTillman, J. E., N. C. Johnson, P. Guttorp, and D. B. Percival ( 1993 ), The Martian annual atmospheric pressure cycle: Years without great dust storms, J. Geophys. Res., 84, 10,963 – 10,971.en_US
dc.identifier.citedreferenceToigo, A. D., M. I. Richardson, S. P. Ewald, and P. J. Gierasch ( 2003 ), Numerical simulation of Martian dust devils, J. Geophys. Res., 108 ( E6 ), 5047, doi: 10.1029/2002JE002002.en_US
dc.identifier.citedreferenceTyler, D., Jr., and J. R. Barnes ( 2013 ), Mesoscale modeling of the circulation in the Gale Crater region: An investigation into the complex forcing of convective boundary layer depths, Mars, 8, 58 – 77, doi: 10.1555/mars.2013.0003.en_US
dc.identifier.citedreferenceVasavada, A. R., et al. ( 2012 ), Assessment of environments for Mars Science Laboratory entry, descent, and surface operations, Space Sci. Rev., 170, 793 – 835, doi: 10.1007/s11214‐012‐9911‐3.en_US
dc.identifier.citedreferenceWilson, R. J., and K. Hamilton ( 1996 ), Comprehensive model simulation of thermal tides in the Martian atmosphere, J. Atmos. Sci., 53, 1290 – 1326.en_US
dc.identifier.citedreferenceWilson, R. J., S. R. Lewis, L. Montabone, and M. D. Smith ( 2008 ), Influence of water ice clouds on Martian tropical atmospheric temperatures, Geophys. Res. Lett., 35, L07202, doi: 10.1029/2007GL032405.en_US
dc.identifier.citedreferenceZurek, R. W. ( 1976 ), Diurnal tide in the Martian atmosphere, J. Atmos. Sci., 33, 321 – 337.en_US
dc.identifier.citedreferenceZurek, R. W. ( 1981 ), Influence of dust opacities for the 1977 Martian great dust storms from Viking Lander pressure data, Icarus, 45, 202 – 215.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.