Show simple item record

Genetic ablation of ryanodine receptor 2 phosphorylation at Ser‐2808 aggravates Ca 2+ ‐dependent cardiomyopathy by exacerbating diastolic Ca 2+ release

dc.contributor.authorLiu, Binen_US
dc.contributor.authorHo, Hsiang‐tingen_US
dc.contributor.authorVelez‐cortes, Florenciaen_US
dc.contributor.authorLou, Qingen_US
dc.contributor.authorValdivia, Carmen R.en_US
dc.contributor.authorKnollmann, Bjorn C.en_US
dc.contributor.authorValdivia, Hector H.en_US
dc.contributor.authorGyorke, Sandoren_US
dc.date.accessioned2014-05-23T16:00:03Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-05-23T16:00:03Z
dc.date.issued2014-05-01en_US
dc.identifier.citationLiu, Bin; Ho, Hsiang‐ting ; Velez‐cortes, Florencia ; Lou, Qing; Valdivia, Carmen R.; Knollmann, Bjorn C.; Valdivia, Hector H.; Gyorke, Sandor (2014). "Genetic ablation of ryanodine receptor 2 phosphorylation at Serâ 2808 aggravates Ca 2+ â dependent cardiomyopathy by exacerbating diastolic Ca 2+ release." The Journal of Physiology 592(9): 1957-1973.en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106986
dc.description.abstractPhosphorylation of the cardiac ryanodine receptor (RyR2) by protein kinase A (PKA) at Ser‐2808 is suggested to mediate the physiological ‘fight or flight’ response and contribute to heart failure by rendering the sarcoplasmic reticulum (SR) leaky for Ca 2+ . In the present study, we examined the potential role of RyR2 phosphorylation at Ser‐2808 in the progression of Ca 2+ ‐dependent cardiomyopathy (CCM) by using mice genetically modified to feature elevated SR Ca 2+ leak while expressing RyR2s that cannot be phosphorylated at this site (S2808A). Surprisingly, rather than alleviating the disease phenotype, constitutive dephosphorylation of Ser‐2808 aggravated CCM as manifested by shortened survival, deteriorated in vivo cardiac function, exacerbated SR Ca 2+ leak and mitochondrial injury. Notably, the deteriorations of cardiac function, myocyte Ca 2+ handling, and mitochondria integrity were consistently worse in mice with heterozygous ablation of Ser‐2808 than in mice with complete ablation. Wild‐type (WT) and CCM myocytes expressing unmutated RyR2s exhibited a high level of baseline phosphorylation at Ser‐2808. Exposure of these CCM cells to protein phosphatase 1 caused a transitory increase in Ca 2+ leak attributable to partial dephosphorylation of RyR2 tetramers at Ser‐2808 from more fully phosphorylated state. Thus, exacerbated Ca 2+ leak through partially dephosphorylated RyR2s accounts for the prevalence of the disease phenotype in the heterozygous S2808A CCM mice. These results do not support the importance of RyR2 hyperphosphorylation in Ca 2+ ‐dependent heart disease, and rather suggest roles for the opposite process, the RyR2 dephosphorylation at this residue in physiological and pathophysiological Ca 2+ signalling.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleGenetic ablation of ryanodine receptor 2 phosphorylation at Ser‐2808 aggravates Ca 2+ ‐dependent cardiomyopathy by exacerbating diastolic Ca 2+ releaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106986/1/tjp6067.pdf
dc.identifier.doi10.1113/jphysiol.2013.264689en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceRespress JL, van Oort RJ, Li N, Rolim N, Dixit SS, Dealmeida A, Voigt N, Lawrence WS, Skapura DG, Skardal K, Wisloff U, Wieland T, Ai X, Pogwizd SM, Dobrev D & Wehrens XH ( 2012 ). Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res 110, 1474 – 1483.en_US
dc.identifier.citedreferenceLoukianov E, Ji Y, Grupp IL, Kirkpatrick DL, Baker DL, Loukianova T, Grupp G, Lytton J, Walsh RA & Periasamy M ( 1998 ). Enhanced myocardial contractility and increased Ca 2 + transport function in transgenic hearts expressing the fast‐twitch skeletal muscle sarcoplasmic reticulum Ca 2 + ‐ATPase. Circ Res 83, 889 – 897.en_US
dc.identifier.citedreferenceMarx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N & Marks AR ( 2000 ). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365 – 376.en_US
dc.identifier.citedreferenceMolkentin JD ( 2000 ). Calcineurin and beyond: cardiac hypertrophic signalling. Circ Res 87, 731 – 738.en_US
dc.identifier.citedreferenceNakai J, Imagawa T, Hakamat Y, Shigekawa M, Takeshima H & Numa S ( 1990 ). Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett 271, 169 – 177.en_US
dc.identifier.citedreferencePacker M ( 1988 ). Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77, 721 – 730.en_US
dc.identifier.citedreferencePereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, Wehrens XH, Chen J & Bers DM ( 2013 ). Epac2 mediates cardiac β1‐adrenergic‐dependent sarcoplasmic reticulum Ca 2 + leak and arrhythmia. Circulation 127, 913 – 922.en_US
dc.identifier.citedreferenceShan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX & Marks AR ( 2010 ). Role of chronic ryanodine receptor phosphorylation in heart failure and β‐adrenergic receptor blockade in mice. J Clin Invest 120, 4375 – 4387.en_US
dc.identifier.citedreferenceShannon TR, Pogwizd SM & Bers DM ( 2003 ). Elevated sarcoplasmic reticulum Ca 2 + leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93, 592 – 594.en_US
dc.identifier.citedreferenceStange M, Xu L, Balshaw D, Yamaguchi N & Meissner G ( 2003 ). Characterization of recombinant skeletal muscle (Ser‐2843) and cardiac muscle (Ser‐2809) ryanodine receptor phosphorylation mutants. J Biol Chem 278, 51693 – 51702.en_US
dc.identifier.citedreferenceTerentyev D, Viatchenko‐Karpinski S, Gyorke I, Terentyeva R & Gyorke S ( 2003 ). Protein phosphatases decrease sarcoplasmic reticulum calcium content by stimulating calcium release in cardiac myocytes. J Physiol 552, 109 – 118.en_US
dc.identifier.citedreferenceUllrich ND, Valdivia HH & Niggli E ( 2012 ). PKA phosphorylation of cardiac ryanodine receptor modulates SR luminal Ca 2 + sensitivity. J Mol Cell Cardiol 53, 33 – 42.en_US
dc.identifier.citedreferenceValdivia HH, Kaplan JH, Ellis‐Davies GC & Lederer WJ ( 1995 ). Rapid adaptation of cardiac ryanodine receptors: modulation by Mg 2 + and phosphorylation. Science 267, 1997 – 2000.en_US
dc.identifier.citedreferenceWehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A & Marks AR ( 2006 ). Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A 103, 511 – 518.en_US
dc.identifier.citedreferenceXiao B, Jiang MT, Zhao M, Yang D, Sutherland C, Lai FA, Walsh MP, Warltier DC, Cheng H & Chen SR ( 2005 ). Characterization of a novel PKA phosphorylation site, serine‐2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res 96, 847 – 855.en_US
dc.identifier.citedreferenceXiao B, Sutherland C, Walsh MP & Chen SR ( 2004 ). Protein kinase A phosphorylation at serine‐2808 of the cardiac Ca 2 + ‐release channel (ryanodine receptor) does not dissociate 12.6‐kDa FK506‐binding protein (FKBP12.6). Circ Res 94, 487 – 495.en_US
dc.identifier.citedreferenceXiao B, Tian X, Xie W, Jones PP, Cai S, Wang X, Jiang D, Kong H, Zhang L, Chen K, Walsh MP, Cheng H & Chen SR ( 2007 ). Functional consequence of protein kinase A‐dependent phosphorylation of the cardiac ryanodine receptor: sensitization of store overload‐induced Ca 2 + release. J Biol Chem 282, 30256 – 30264.en_US
dc.identifier.citedreferenceXiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, Shimoni Y, Cheng H, Ter Keurs H & Chen SR ( 2006 ). Ser‐2030, but not Ser‐2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β‐adrenergic stimulation in normal and failing hearts. Biochem J 396, 7 – 16.en_US
dc.identifier.citedreferenceXu L, Wang Y, Yamaguchi N, Pasek DA & Meissner G ( 2008 ). Single channel properties of heterotetrameric mutant RyR1 ion channels linked to core myopathies. J Biol Chem 283, 6321 – 6329.en_US
dc.identifier.citedreferenceZhang H, Makarewich CA, Kubo H, Wang W, Duran JM, Li Y, Berretta RM, Koch WJ, Chen X, Gao E, Valdivia HH & Houser SR ( 2012 ). Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction. Circ Res 110, 831 – 840.en_US
dc.identifier.citedreferenceZhou J, Yi J, Fu R, Liu E, Siddique T, Rios E & Deng HX ( 2010 ). Hyperactive intracellular calcium signalling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem 285, 705 – 712.en_US
dc.identifier.citedreferenceAistrup GL, Kelly JE, Kapur S, Kowalczyk M, Sysman‐Wolpin I, Kadish AH & Wasserstrom JA ( 2006 ). Pacing‐induced heterogeneities in intracellular Ca 2 + signalling, cardiac alternans, and ventricular arrhythmias in intact rat heart. Circ Res 99, e65 – 73.en_US
dc.identifier.citedreferenceAnderson ME, Brown JH & Bers DM ( 2011 ). CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51, 468 – 473.en_US
dc.identifier.citedreferenceBacks J & Olson EN ( 2006 ). Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98, 15 – 24.en_US
dc.identifier.citedreferenceBassani JW, Yuan W & Bers DM ( 1995 ). Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol Cell Physiol 268, C1313 – C1319.en_US
dc.identifier.citedreferenceBelevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA & Gyorke S ( 2011 ). The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90, 493 – 502.en_US
dc.identifier.citedreferenceBenkusky NA, Weber CS, Scherman JA, Farrell EF, Hacker TA, John MC, Powers PA & Valdivia HH ( 2007 ). Intact β‐adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 101, 819 – 829.en_US
dc.identifier.citedreferenceBers DM ( 2012 ). Ryanodine receptor S2808 phosphorylation in heart failure: smoking gun or red herring. Circ Res 110, 796 – 799.en_US
dc.identifier.citedreferenceBers DM, Despa S & Bossuyt J ( 2006 ). Regulation of Ca 2 + and Na + in normal and failing cardiac myocytes. Ann N Y Acad Sci 1080, 165 – 177.en_US
dc.identifier.citedreferenceBovo E, Lipsius SL & Zima AV ( 2012 ). Reactive oxygen species contribute to the development of arrhythmogenic Ca 2 + waves during β‐adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol 590, 3291 – 3304.en_US
dc.identifier.citedreferenceCarter S, Colyer J & Sitsapesan R ( 2006 ). Maximum phosphorylation of the cardiac ryanodine receptor at serine‐2809 by protein kinase a produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation. Circ Res 98, 1506 – 1513.en_US
dc.identifier.citedreferenceChu G, Lester JW, Young KB, Luo W, Zhai J & Kranias EG ( 2000 ). A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta ‐agonists. J Biol Chem 275, 38938 – 38943.en_US
dc.identifier.citedreferenceCurran J, Brown KH, Santiago DJ, Pogwizd S, Bers DM & Shannon TR ( 2010 ). Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca 2 + ‐calmodulin‐dependent protein kinase II. J Mol Cell Cardiol 49, 25 – 32.en_US
dc.identifier.citedreferenceDe Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M & Catterall WA ( 1996 ). Specific phosphorylation of a site in the full‐length form of the alpha 1 subunit of the cardiac L‐type calcium channel by adenosine 3′,5′‐cyclic monophosphate‐dependent protein kinase. Biochemistry 35, 10392 – 10402.en_US
dc.identifier.citedreferenceDiaz ME, Eisner DA & O'Neill SC ( 2002 ). Depressed ryanodine receptor activity increases variability and duration of the systolic Ca 2 + transient in rat ventricular myocytes. Circ Res 91, 585 – 593.en_US
dc.identifier.citedreferenceDorn GW 2nd ( 2013 ). Mitochondrial dynamics in heart disease. Biochim Biophys Acta 1833, 233 – 241.en_US
dc.identifier.citedreferenceDuhme N, Schweizer PA, Thomas D, Becker R, Schroter J, Barends TR, Schlichting I, Draguhn A, Bruehl C, Katus HA & Koenen M ( 2014 ). Altered HCN4 channel C‐linker interaction is associated with familial tachycardia‐bradycardia syndrome and atrial fibrillation. Eur Heart J 34, 2768 – 2775.en_US
dc.identifier.citedreferenceEisner DA, Diaz ME, O'Neill SC & Trafford AW ( 2004 ). Physiological and pathological modulation of ryanodine receptor function in cardiac muscle. Cell Calcium 35, 583 – 589.en_US
dc.identifier.citedreferenceFerrero P, Said M, Sanchez G, Vittone L, Valverde C, Donoso P, Mattiazzi A & Mundina‐Weilenmann C ( 2007 ). Ca 2 + /calmodulin kinase II increases ryanodine binding and Ca 2 + ‐induced sarcoplasmic reticulum Ca 2 + release kinetics during β‐adrenergic stimulation. J Mol Cell Cardiol 43, 281 – 291.en_US
dc.identifier.citedreferenceFill M & Copello JA ( 2002 ). Ryanodine receptor calcium release channels. Physiol Rev 82, 893 – 922.en_US
dc.identifier.citedreferenceFischer T, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto J, Gummert J, Schondube F, Hasenfuss G, Maier L & Sossalla S ( 2013 ). CaMKII and PKA differentially regulate SR Ca 2 + ‐leak in human cardiac pathology. Circulation 128, 970 – 981.en_US
dc.identifier.citedreferenceFraysse B, Nagi SM, Boher B, Ragot H, Laine J, Salmon A, Fiszman MY, Toussaint M & Fromes Y ( 2010 ). Ca 2 + overload and mitochondrial permeability transition pore activation in living δ‐sarcoglycan‐deficient cardiomyocytes. Am J Physiol Cell Physiol 299, C706 – C713.en_US
dc.identifier.citedreferenceGyorke S, Lukyanenko V & Gyorke I ( 1997 ). Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J Physiol 500, 297 – 309.en_US
dc.identifier.citedreferenceHeineke J & Molkentin JD ( 2006 ). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7, 589 – 600.en_US
dc.identifier.citedreferenceJaehnig EJ, Heidt AB, Greene SB, Cornelissen I & Black BL ( 2006 ). Increased susceptibility to isoproterenol‐induced cardiac hypertrophy and impaired weight gain in mice lacking the histidine‐rich calcium‐binding protein. Mol Cell Biol 26, 9315 – 9326.en_US
dc.identifier.citedreferenceKalyanasundaram A, Lacombe VA, Belevych AE, Brunello L, Carnes CA, Janssen PM, Knollmann BC, Periasamy M & Gyorke S ( 2012 ). Up‐regulation of sarcoplasmic reticulum Ca 2 + uptake leads to cardiac hypertrophy, contractile dysfunction and early mortality in mice deficient in CASQ2. Cardiovasc Res 98, 297 – 306.en_US
dc.identifier.citedreferenceKubalova Z, Terentyev D, Viatchenko‐Karpinski S, Nishijima Y, Gyorke I, Terentyeva R, da Cunha DN, Sridhar A, Feldman DS, Hamlin RL, Carnes CA & Gyorke S ( 2005 ). Abnormal intrastore calcium signalling in chronic heart failure. Proc Natl Acad Sci U S A 102, 14104 – 14109.en_US
dc.identifier.citedreferenceLi P & Chen SR ( 2001 ). Molecular basis of Ca 2 + activation of the mouse cardiac Ca 2 + release channel (ryanodine receptor). J Gen Physiol 118, 33 – 44.en_US
dc.identifier.citedreferenceLi Y, Kranias EG, Mignery GA & Bers DM ( 2002 ). Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res 90, 309 – 316.en_US
dc.identifier.citedreferenceLitwin SE, Zhang D & Bridge JH ( 2000 ). Dyssynchronous Ca 2 + sparks in myocytes from infarcted hearts. Circ Res 87, 1040 – 1047.en_US
dc.identifier.citedreferenceLoaiza R, Benkusky NA, Powers PP, Hacker T, Noujaim S, Ackerman MJ, Jalife J & Valdivia HH ( 2012 ). Heterogeneity of ryanodine receptor dysfunction in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res 112, 298 – 308.en_US
dc.identifier.citedreferenceLokuta AJ, Rogers TB, Lederer WJ & Valdivia HH ( 1995 ). Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation‐dephosphorylation mechanism. J Physiol 487, 609 – 622.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.