Show simple item record

Autoimmune responses in T1DM : quantitative methods to understand onset, progression, and prevention of disease

dc.contributor.authorJaberi‐douraki, Majiden_US
dc.contributor.authorLiu, Shang Wan (Shalon)en_US
dc.contributor.authorPietropaolo, Massimoen_US
dc.contributor.authorKhadra, Anmaren_US
dc.date.accessioned2014-05-23T16:00:03Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-05-23T16:00:03Z
dc.date.issued2014-05en_US
dc.identifier.citationJaberi‐douraki, Majid ; Liu, Shang Wan (Shalon); Pietropaolo, Massimo; Khadra, Anmar (2014). "Autoimmune responses in T1DM : quantitative methods to understand onset, progression, and prevention of disease." Pediatric Diabetes 15(3): 162-174.en_US
dc.identifier.issn1399-543Xen_US
dc.identifier.issn1399-5448en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106988
dc.description.abstractUnderstanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes ( T1D ) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4 + and CD8 + T‐cells that infiltrate the pancreatic islets of Langerhans and destroy insulin‐secreting β‐cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet‐specific autoantibodies that appear in high‐risk subjects ( HRS ) several years prior to the onset of diabetes‐related symptoms. It has been suggested that T1D is relapsing‐remitting in nature and that islet‐specific autoantibodies released by lymphocytic B‐cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T‐ and B‐cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.en_US
dc.publisherJohn Wiley & Sons A/Sen_US
dc.subject.otherT‐Cellsen_US
dc.subject.otherT1Den_US
dc.subject.otherβ‐Cellsen_US
dc.subject.otherAutoantibodiesen_US
dc.subject.otherAutoimmunityen_US
dc.subject.otherAvidityen_US
dc.subject.otherB‐Cellsen_US
dc.subject.otherMarkov Modelsen_US
dc.subject.otherMathematical Modelsen_US
dc.subject.otherPredictive Algorithmsen_US
dc.titleAutoimmune responses in T1DM : quantitative methods to understand onset, progression, and prevention of diseaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106988/1/pedi12148.pdf
dc.identifier.doi10.1111/pedi.12148en_US
dc.identifier.sourcePediatric Diabetesen_US
dc.identifier.citedreferenceTopp B, Promislow K, de Vries G, Miura RM, Finegood DT. A model of beta‐cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000: 206: 605 – 619.en_US
dc.identifier.citedreferenceWang X, He Z, Ghosh S. Investigation of the age‐at‐onset heterogeneity in type 1 diabetes through mathematical modeling. Math Biosci 2006: 203: 79 – 99.en_US
dc.identifier.citedreferenceMarinković T, Sysi‐Aho M, Oresic M. Integrated model of metabolism and autoimmune response in beta‐cell death and progression to type 1 diabetes. PLoS One 2012: 7: e51909.en_US
dc.identifier.citedreferenceMarée AF, Komba M, Finegood DT, Edelstein‐Keshet L. A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes‐prone (NOD) mice. J Appl Physiol 2008: 104: 157 – 169.en_US
dc.identifier.citedreferenceMarée AF, Komba M, Dyck C, Labecki M, Finegood DT, Edelstein‐Keshet L. Quantifying macrophage defects in type 1 diabetes. J Theor Biol 2005: 233: 533 – 551.en_US
dc.identifier.citedreferenceMarée AF, Kublik R, Finegood DT, Edelstein‐Keshet L. Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? Philos Transact A Math Phys Eng Sci 2006: 364: 1267 – 1282.en_US
dc.identifier.citedreferenceStoffels K, Overbergh L, Giulietti A et al. NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells. J Autoimmun 2004: 23: 9 – 15.en_US
dc.identifier.citedreferenceKhadra A, Santamaria P, Edelstein‐Keshet L. The pathogenicity of self‐antigen decreases at high levels of autoantigenicity: a computational approach. Int Immunol 2010: 22: 571 – 582.en_US
dc.identifier.citedreferenceYewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996: 157: 1823 – 1826.en_US
dc.identifier.citedreferenceHan B, Serra P, Amrani A et al. Prevention of diabetes by manipulation of anti‐IGRP autoimmunity: high efficiency of a low‐affinity peptide. Nat Med 2005: 11: 645 – 652.en_US
dc.identifier.citedreferenceAichele P, Kyburz D, Ohashi PS et al. Peptide‐induced T‐cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 1994: 91: 444 – 448.en_US
dc.identifier.citedreferenceToes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T‐cell tolerance induction. Proc Natl Acad Sci USA 1996: 93: 7855 – 7860.en_US
dc.identifier.citedreferenceMarée AF, Santamaria P, Edelstein‐Keshet L. Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen‐specific therapy. Int Immunol 2006: 18: 1067 – 1077.en_US
dc.identifier.citedreferenceTrudeau JD, Kelly‐Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 2003: 111: 217 – 223.en_US
dc.identifier.citedreferenceMahaffy JM, Edelstein‐Keshet L. Modeling cyclic waves of circulating T cells in autoimmune diabetes. SIAM J Appl Math 2007: 67: 915 – 937.en_US
dc.identifier.citedreferencevon Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing‐remitting disease? Nat Rev Immunol 2007: 7: 988 – 994.en_US
dc.identifier.citedreferenceJaberi‐Douraki M, Pietropaolo M, Khadra A. Predictive models of type 1 diabetes progression: understanding T‐cell cycles and their implications on autoantibody release. PLoS One 2014: 9: e93326. doi:10.1371/journal.pone.0093326.en_US
dc.identifier.citedreferenceTsai S, Clemente‐Casares X, Santamaria P. CD8+ Tregs in autoimmunity: learning “self”‐control from experience. Cell Mol Life Sci 2011: 68: 3781 – 3795.en_US
dc.identifier.citedreferenceKhadra A, Santamaria P, Edelstein‐Keshet L. The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation. J Theor Biol 2009: 256: 126 – 141.en_US
dc.identifier.citedreferenceKhadra A, Tsai S, Santamaria P, Edelstein‐Keshet L. On how monospecific memory‐like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach. J Immunol 2010: 185: 5962 – 5972.en_US
dc.identifier.citedreferenceSugarman J, Tsai S, Santamaria P, Khadra A. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013: 91: 350 – 359.en_US
dc.identifier.citedreferenceNelson P, Smith N, Ciupe S, Zou W, Omenn GS, Pietropaolo M. Modeling dynamic changes in type 1 diabetes progression: quantifying beta‐cell variation after the appearance of islet‐specific autoimmune responses. Math Biosci Eng 2009: 6: 753 – 778.en_US
dc.identifier.citedreferenceBrusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008: 223: 371 – 390.en_US
dc.identifier.citedreferenceMagombedze G, Nduru P, Bhunu CP, Mushayabasa S. Mathematical modelling of immune regulation of type 1 diabetes. Biosystems 2010: 102: 88 – 98.en_US
dc.identifier.citedreferenceMallone R, Kochik SA, Reijonen H et al. Functional avidity directs T‐cell fate in autoreactive CD4+ T cells. Blood 2005: 106: 2798 – 2805.en_US
dc.identifier.citedreferenceHan B, Serra P, Yamanouchi J et al. Developmental control of CD8 T cell‐avidity maturation in autoimmune diabetes. J Clin Invest 2005: 115: 1879 – 1887.en_US
dc.identifier.citedreferenceAjmera I, Swat M, Laibe C, Novere NL, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol 2013: 2: e54.en_US
dc.identifier.citedreferenceOling V, Marttila J, Ilonen J et al. GAD65‐ and proinsulin‐specific CD4+ T‐cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at‐risk subjects. J Autoimmun 2005: 25: 235 – 243.en_US
dc.identifier.citedreferenceReijonen H, Novak EJ, Kochik S et al. Detection of GAD65‐specific T‐cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at‐risk subjects. Diabetes 2002: 51: 1375 – 1382.en_US
dc.identifier.citedreferenceStandifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA‐A*0201 – restricted epitopes in recent‐onset type 1 diabetic subjects and antibody‐positive relatives. Diabetes 2006: 55: 3061 – 3067.en_US
dc.identifier.citedreferenceVelthuis JH, Unger WW, Abreu JR et al. Simultaneous detection of circulating autoreactive CD8+ T‐cells specific for different islet cell‐associated epitopes using combinatorial MHC multimers. Diabetes 2010: 59: 1721 – 1730.en_US
dc.identifier.citedreferenceWang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen Recognition Is Required for Recruitment of IGRP206–214‐Autoreactive CD8+ T Cells but Is Dispensable for Tolerance. J Immunol 2012: 189: 2975 – 2984.en_US
dc.identifier.citedreferenceChentoufi AA, Palumbo M, Polychronakos C. Proinsulin expression by Hassall's corpuscles in the mouse thymus. Diabetes 2004: 53: 354 – 359.en_US
dc.identifier.citedreferenceDerbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001: 2: 1032 – 1039.en_US
dc.identifier.citedreferencePietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012: 2: a012831. doi: 10.1101/cshperspect.a012831.en_US
dc.identifier.citedreferenceO'Brien BA, Fieldus WE, Field CJ, Finegood DT. Clearance of apoptotic beta‐cells is reduced in neonatal autoimmune diabetes‐prone rats. Cell Death Differ 2002: 9: 457 – 464.en_US
dc.identifier.citedreferenceO'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002: 51: 2481 – 2488.en_US
dc.identifier.citedreferenceBeyan H, Buckley LR, Yousaf N, Londei M, Leslie RD. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003: 19: 89 – 100.en_US
dc.identifier.citedreferenceCardozo AK, Ortis F, Storling J et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta‐cells. Diabetes 2005: 54: 452 – 461.en_US
dc.identifier.citedreferenceEstella E, McKenzie MD, Catterall T et al. Granzyme B‐mediated death of pancreatic beta‐cells requires the proapoptotic BH3‐only molecule bid. Diabetes 2006: 55: 2212 – 2219.en_US
dc.identifier.citedreferenceAtkinson MA, Bluestone JA, Eisenbarth GS et al. How does type 1 diabetes develop? The notion of homicide or beta‐cell suicide revisited. Diabetes 2011: 60: 1370 – 1379.en_US
dc.identifier.citedreferenceO'Sullivan‐Murphy B, Urano F. ER stress as a trigger for beta‐cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 2012: 61: 780 – 781.en_US
dc.identifier.citedreferenceSchnell S. A model of the unfolded protein response: pancreatic beta‐cell as a case study. Cell Physiol Biochem 2009: 23: 233 – 244.en_US
dc.identifier.citedreferenceNejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA‐B and HLA‐A. Nature 2007: 450: 887 – 892.en_US
dc.identifier.citedreferenceMorel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA‐DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA 1988: 85: 8111 – 8115.en_US
dc.identifier.citedreferenceWalter U, Toepfer T, Dittmar KE et al. Pancreatic NOD beta cells express MHC class II protein and the frequency of I‐A(g7) mRNA‐expressing beta cells strongly increases during progression to autoimmune diabetes. Diabetologia 2003: 46: 1106 – 1114.en_US
dc.identifier.citedreferenceAmrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T‐cell population. Nature 2000: 406: 739 – 742.en_US
dc.identifier.citedreferencePreda I, McEvoy RC, Lin M et al. Soluble, dimeric HLA DR4‐peptide chimeras: an approach for detection and immunoregulation of human type‐1 diabetes. Eur J Immunol 2005: 35: 2762 – 2775.en_US
dc.identifier.citedreferenceHerold KC, Hagopian W, Auger JA et al. Anti‐CD3 monoclonal antibody in new‐onset type 1 diabetes mellitus. N Engl J Med 2002: 346: 1692 – 1698.en_US
dc.identifier.citedreferenceKeymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3‐antibody therapy in new‐onset type 1 diabetes. N Engl J Med 2005: 352: 2598 – 2608.en_US
dc.identifier.citedreferenceBour‐Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune diabetes? J Clin Invest 2007: 117: 3642 – 3645.en_US
dc.identifier.citedreferenceClemente‐Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett 2014: 158: 167 – 174.en_US
dc.identifier.citedreferenceTsai S, Shameli A, Yamanouchi J et al. Reversal of autoimmunity by boosting memory‐like autoregulatory T cells. Immunity 2010: 32: 568 – 580.en_US
dc.identifier.citedreferencePietropaolo M, Becker DJ, LaPorte RE et al. Progression to insulin‐requiring diabetes in seronegative prediabetic subjects: the role of two HLA‐DQ high‐risk haplotypes. Diabetologia 2002: 45: 66 – 76.en_US
dc.identifier.citedreferenceVerge CF, Gianani R, Kawasaki E et al. Prediction of type I diabetes in first‐degree relatives using a combination of insulin, GAD, and ICA512bdc/IA‐2 autoantibodies. Diabetes 1996: 45: 926 – 933.en_US
dc.identifier.citedreferencePietropaolo M, Eisenbarth GS. Autoantibodies in human diabetes. Curr Dir Autoimmun 2001: 4: 252 – 282.en_US
dc.identifier.citedreferenceAchenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 2005: 54 ( Suppl 2 ): S25 – S31.en_US
dc.identifier.citedreferenceEisenbarth GS. Update in type 1 diabetes. J Clin Endocrinol Metab 2007: 92: 2403 – 2407.en_US
dc.identifier.citedreferenceMaclaren N, Lan M, Coutant R et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA‐2 and IA‐2beta predict immune‐mediated (Type 1) diabetes in relatives. J Autoimmun 1999: 12: 279 – 287.en_US
dc.identifier.citedreferencePalosuo T, Virtamo J, Haukka J et al. High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle‐aged men – a nested case–control study. Thromb Haemost 1997: 78: 1178 – 1182.en_US
dc.identifier.citedreferenceAchenbach P, Hummel M, Thumer L, Boerschmann H, Hofelmann D, Ziegler AG. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody‐positive children. Diabetologia 2013: 56: 1615 – 1622.en_US
dc.identifier.citedreferenceZiegler AG, Rewers M, Simell O et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013: 309: 2473 – 2479.en_US
dc.identifier.citedreferenceBingley PJ, Christie MR, Bonifacio E et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody‐positive relatives. Diabetes 1994: 43: 1304 – 1310.en_US
dc.identifier.citedreferencePietropaolo M, Yu S, Libman IM et al. Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies. Pediatr Diabetes 2005: 6: 184 – 192.en_US
dc.identifier.citedreferenceBollyky J, Sanda S, Greenbaum CJ. Type 1 diabetes mellitus: primary, secondary, and tertiary prevention. Mt Sinai J Med 2008: 75: 385 – 397.en_US
dc.identifier.citedreferenceNaik RG, Palmer JP. Preservation of β‐cell function in type 1 diabetes. Diabetes Rev 1999: 7: 154 – 182.en_US
dc.identifier.citedreferenceBingley PJ, Gale EA. Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985–1986. BMJ 1989: 298: 558 – 560.en_US
dc.identifier.citedreferenceEisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986: 314: 1360 – 1368.en_US
dc.identifier.citedreferenceKostraba JN, Gay EC, Cai Y et al. Incidence of insulin‐dependent diabetes mellitus in Colorado. Epidemiology 1992: 3: 232 – 238.en_US
dc.identifier.citedreferenceLaPorte RE, Dorman JS, Tajima N et al. Pittsburgh Insulin‐Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications. Pediatrics 1986: 78: 1027 – 1033.en_US
dc.identifier.citedreferenceBarmeier H, McCulloch DK, Neifing JL et al. Risk for developing type 1 (insulin‐dependent) diabetes mellitus and the presence of islet 64K antibodies. Diabetologia 1991: 34: 727 – 733.en_US
dc.identifier.citedreferenceRiley WJ, Maclaren NK, Krischer J et al. A prospective study of the development of diabetes in relatives of patients with insulin‐dependent diabetes. N Engl J Med 1990: 323: 1167 – 1172.en_US
dc.identifier.citedreferenceMaclaren NK. How, when, and why to predict IDDM. Diabetes 1988: 37: 1591 – 1594.en_US
dc.identifier.citedreferenceBingley PJ, Bonifacio E, Gale EA. Can we really predict IDDM? Diabetes 1993: 42: 213 – 220.en_US
dc.identifier.citedreferenceLatek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes‐associated MHC class II molecule of NOD mice. Immunity 2000: 12: 699 – 710.en_US
dc.identifier.citedreferenceTodd JA, Bell JI, McDevitt HO. HLA‐DQ beta gene contributes to susceptibility and resistance to insulin‐dependent diabetes mellitus. Nature 1987: 329: 599 – 604.en_US
dc.identifier.citedreferenceTisch R, McDevitt H. Insulin‐dependent diabetes mellitus. Cell 1996: 85: 291 – 297.en_US
dc.identifier.citedreferenceQuartey‐Papafio R, Lund T, Chandler P et al. Aspartate at position 57 of nonobese diabetic I‐Ag7 beta‐chain diminishes the spontaneous incidence of insulin‐dependent diabetes mellitus. J Immunol 1995: 154: 5567 – 5575.en_US
dc.identifier.citedreferenceTsai S, Santamaria P. MHC Class II polymorphisms, autoreactive T‐cells, and autoimmunity. Front Immunol 2013: 4: 321.en_US
dc.identifier.citedreferenceSuri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER. First signature of islet beta‐cell‐derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 2008: 180: 3849 – 3856.en_US
dc.identifier.citedreferenceStadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci USA 2010: 107: 10978 – 10983.en_US
dc.identifier.citedreferenceCrawford F, Stadinski B, Jin N et al. Specificity and detection of insulin‐reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci USA 2011: 108: 16729 – 16734.en_US
dc.identifier.citedreferenceMohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 2010: 11: 350 – 354.en_US
dc.identifier.citedreferenceDoyle HA, Mamula MJ. Post‐translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001: 22: 443 – 449.en_US
dc.identifier.citedreferenceAnderton SM. Post‐translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 2004: 16: 753 – 758.en_US
dc.identifier.citedreferenceFinegood DT, Scaglia L, Bonner‐Weir S. Dynamics of beta‐cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995: 44: 249 – 256.en_US
dc.identifier.citedreferenceTrudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal beta‐cell apoptosis: a trigger for autoimmune diabetes? Diabetes 2000: 49: 1 – 7.en_US
dc.identifier.citedreferenceNerup J, Mandrup‐Poulsen T, Helqvist S et al. On the pathogenesis of IDDM. Diabetologia 1994: 37 ( Suppl 2 ): S82 – S89.en_US
dc.identifier.citedreferenceNerup J, Mandrup‐Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. Mechanisms of pancreatic beta‐cell destruction in type I diabetes. Diabetes Care 1988: 11 ( Suppl 1 ): 16 – 23.en_US
dc.identifier.citedreferenceFreiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, Nerup J. Onset of type 1 diabetes: a dynamical instability. Diabetes 1999: 48: 1677 – 1685.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.