Show simple item record

Optimized simultaneous ASL and BOLD functional imaging of the whole brain

dc.contributor.authorSchmithorst, Vincent J.en_US
dc.contributor.authorHernandez‐garcia, Luisen_US
dc.contributor.authorVannest, Jenniferen_US
dc.contributor.authorRajagopal, Akilaen_US
dc.contributor.authorLee, Gregen_US
dc.contributor.authorHolland, Scott K.en_US
dc.date.accessioned2014-05-23T16:00:04Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-05-23T16:00:04Z
dc.date.issued2014-05en_US
dc.identifier.citationSchmithorst, Vincent J.; Hernandez‐garcia, Luis ; Vannest, Jennifer; Rajagopal, Akila; Lee, Greg; Holland, Scott K. (2014). "Optimized simultaneous ASL and BOLD functional imaging of the whole brain." Journal of Magnetic Resonance Imaging 39(5): 1104-1117.en_US
dc.identifier.issn1053-1807en_US
dc.identifier.issn1522-2586en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106990
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherArterial Spin Labelingen_US
dc.subject.otherPediatric Neuroimagingen_US
dc.subject.otherBOLD Functional Imagingen_US
dc.titleOptimized simultaneous ASL and BOLD functional imaging of the whole brainen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106990/1/jmri24273.pdf
dc.identifier.doi10.1002/jmri.24273en_US
dc.identifier.sourceJournal of Magnetic Resonance Imagingen_US
dc.identifier.citedreferenceWoolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 2001; 14: 1370 – 1386.en_US
dc.identifier.citedreferenceLiu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. Neuroimage 2005; 24: 207 – 215.en_US
dc.identifier.citedreferenceTriantafyllou C, Polimeni JR, Wald LL. Physiological noise and signal‐to‐noise ratio in fMRI with multi‐channel array coils. Neuroimage 2011; 55: 597 – 606.en_US
dc.identifier.citedreferenceGilbert G. Measurement of signal‐to‐noise ratios in sum‐of‐squares MR images. J Magn Reson Imaging 2007; 26: 1678.en_US
dc.identifier.citedreferenceDietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal‐to‐noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007; 26: 375 – 385.en_US
dc.identifier.citedreferenceJenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825 – 841.en_US
dc.identifier.citedreferenceMumford JA, Hernandez‐Garcia L, Lee GR, Nichols TE. Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 2006; 33: 103 – 114.en_US
dc.identifier.citedreferenceAvants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12: 26 – 41.en_US
dc.identifier.citedreferenceVannest JJ, Karunanayaka PR, Altaye M, et al. Comparison of fMRI data from passive listening and active‐response story processing tasks in children. J Magn Reson Imaging 2009; 29: 971 – 976.en_US
dc.identifier.citedreferenceWu WC, Jain V, Li C, et al. In vivo venous blood T1 measurement using inversion recovery true‐FISP in children and adults. Magn Reson Med 2010; 64: 1140 – 1147.en_US
dc.identifier.citedreferenceWansapura JP, Holland SK, Dunn RS, Ball WS Jr. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9: 531 – 538.en_US
dc.identifier.citedreferenceGao JH, Liu HL. Inflow effects on functional MRI. Neuroimage 2012; 62: 1035 – 1039.en_US
dc.identifier.citedreferenceLiu HL, Wei PS, Wai YY, et al. Inflow effects on hemodynamic responses characterized by event‐related fMRI using gradient‐echo EPI sequences. Med Phys 2008; 35: 4300 – 4307.en_US
dc.identifier.citedreferenceFernandez‐Seara MA, Wang Z, Wang J, et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005; 54: 1241 – 1247.en_US
dc.identifier.citedreferenceNielsen JF, Hernandez‐Garcia L. Functional perfusion imaging using pseudocontinuous arterial spin labeling with low‐flip‐angle segmented 3D spiral readouts. Magn Reson Med 2013; 69: 382 – 390.en_US
dc.identifier.citedreferenceGolay X, Pruessmann KP, Weiger M, et al. PRESTO‐SENSE: an ultrafast whole‐brain fMRI technique. Magn Reson Med 2000; 43: 779 – 786.en_US
dc.identifier.citedreferencevan Gelderen P, Duyn JH, Ramsey NF, Liu G, Moonen CT. The PRESTO technique for fMRI. Neuroimage 2012; 62: 676 – 681.en_US
dc.identifier.citedreferenceMcGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage 2000; 11 ( Pt 1 ): 708 – 734.en_US
dc.identifier.citedreferenceSmith AM, Lewis BK, Ruttimann UE, et al. Investigation of low frequency drift in fMRI signal. Neuroimage 1999; 9: 526 – 533.en_US
dc.identifier.citedreferenceBuschkuehl M, Jaeggi SM, Jonides J. Neuronal effects following working memory training. Dev Cogn Neurosci 2012; 2 (Suppl 1): S167 – S179.en_US
dc.identifier.citedreferenceJaeggi SM, Buschkuehl M, Jonides J, Shah P. Short‐ and long‐term benefits of cognitive training. Proc Natl Acad Sci U S A 2011; 108: 10081 – 10086.en_US
dc.identifier.citedreferenceSchapiro MB, Schmithorst VJ, Wilke M, Byars AW, Strawsburg RH, Holland SK. BOLD fMRI signal increases with age in selected brain regions in children. Neuroreport 2004; 15: 2575 – 2578.en_US
dc.identifier.citedreferenceToga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn JD. Mapping the human connectome. Neurosurgery 2012; 71: 1 – 5.en_US
dc.identifier.citedreferenceHoge RD. Calibrated FMRI. Neuroimage 2012; 62: 930 – 937.en_US
dc.identifier.citedreferenceHoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999; 42: 849 – 863.en_US
dc.identifier.citedreferenceAguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 2002; 15: 488 – 500.en_US
dc.identifier.citedreferenceWang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 2003; 49: 796 – 802.en_US
dc.identifier.citedreferenceWoolrich MW, Chiarelli P, Gallichan D, Perthen J, Liu TT. Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magn Reson Med 2006; 56: 891 – 906.en_US
dc.identifier.citedreferenceLiu TT, Wong EC, Frank LR, Buxton RB. Analysis and design of perfusion‐based event‐related fMRI experiments. Neuroimage 2002; 16: 269 – 282.en_US
dc.identifier.citedreferenceGlielmi CB, Xu Q, Craddock RC, Hu X. Simultaneous acquisition of gradient echo/spin echo BOLD and perfusion with a separate labeling coil. Magn Reson Med 2010; 64: 1827 – 1831.en_US
dc.identifier.citedreferenceKastrup A, Kruger G, Neumann‐Haefelin T, Glover GH, Moseley ME. Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage 2002; 15: 74 – 82.en_US
dc.identifier.citedreferenceStefanovic B, Warnking JM, Rylander KM, Pike GB. The effect of global cerebral vasodilation on focal activation hemodynamics. Neuroimage 2006; 30: 726 – 734.en_US
dc.identifier.citedreferenceSt Lawrence KS, Frank JA, Bandettini PA, Ye FQ. Noise reduction in multi‐slice arterial spin tagging imaging. Magn Reson Med 2005; 53: 735 – 738.en_US
dc.identifier.citedreferenceYe FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000; 44: 92 – 100.en_US
dc.identifier.citedreferencede Bie HM, Boersma M, Adriaanse S, et al. Resting‐state networks in awake five‐ to eight‐year old children. Hum Brain Mapp 2012; 33: 1189 – 1201.en_US
dc.identifier.citedreferenceKarunanayaka P, Schmithorst VJ, Vannest J, Szaflarski JP, Plante E, Holland SK. A group independent component analysis of covert verb generation in children: a functional magnetic resonance imaging study. Neuroimage 2010; 51: 472 – 487.en_US
dc.identifier.citedreferenceRubia K. Functional brain imaging across development. Eur Child Adolesc Psychiatry 2012 [Epub ahead of print].en_US
dc.identifier.citedreferenceSchmithorst VJ, Holland SK, Plante E. Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. Neuroimage 2006; 29: 254 – 266.en_US
dc.identifier.citedreferenceSchmithorst VJ, Holland SK, Plante E. Object identification and lexical/semantic access in children: a functional magnetic resonance imaging study of word‐picture matching. Hum Brain Mapp 2007; 28: 1060 – 1074.en_US
dc.identifier.citedreferenceGonzalez‐Castillo J, Roopchansingh V, Bandettini PA, Bodurka J. Physiological noise effects on the flip angle selection in BOLD fMRI. Neuroimage 2011; 54: 2764 – 2778.en_US
dc.identifier.citedreferenceWang J, Alsop DC, Li L, et al. Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 2002; 48: 242 – 254.en_US
dc.identifier.citedreferenceGonzalez‐At JB, Alsop DC, Detre JA. Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 2000; 43: 739 – 746.en_US
dc.identifier.citedreferenceLu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52: 679 – 682.en_US
dc.identifier.citedreferenceWang J, Alsop DC, Song HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599 – 607.en_US
dc.identifier.citedreferenceYoshiura T, Hiwatashi A, Yamashita K, et al. Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin‐labeling in patients with Alzheimer disease. AJNR Am J Neuroradiol 2009; 30: 1388 – 1393.en_US
dc.identifier.citedreferenceKruger G, Glover GH. Physiological noise in oxygenation‐sensitive magnetic resonance imaging. Magn Reson Med 2001; 46: 631 – 637.en_US
dc.identifier.citedreferenceGlover GH, Li TQ, Ress D. Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000; 44: 162 – 167.en_US
dc.identifier.citedreferenceDinov I, Lozev K, Petrosyan P, et al. Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline. PLoS One 2010; 5: pii: e13070.en_US
dc.identifier.citedreferenceDinov ID, Van Horn JD, Lozev KM, et al. Efficient, Distributed and Interactive Neuroimaging Data Analysis Using the LONI Pipeline. Front Neuroinform 2009; 3: 22.en_US
dc.identifier.citedreferenceThevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 1998; 7: 27 – 41.en_US
dc.identifier.citedreferenceSzaflarski JP, Schmithorst VJ, Altaye M, et al. A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old. Ann Neurol 2006; 59: 796 – 807.en_US
dc.identifier.citedreferenceWilke M, Holland SK, Altaye M, Gaser C. Template‐O‐Matic: a toolbox for creating customized pediatric templates. Neuroimage 2008; 41: 903 – 913.en_US
dc.identifier.citedreferenceWong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237 – 249.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.