Show simple item record

Dynamics of Convergent Migration and Mean Motion Resonances in Planetary Systems.

dc.contributor.authorKetchum, Jacob A.en_US
dc.date.accessioned2014-06-02T18:14:16Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-06-02T18:14:16Z
dc.date.issued2014en_US
dc.date.submitted2013en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107050
dc.description.abstractRecent observations of solar systems orbiting other stars show that exoplanets display an enormous range of physical properties and that planetary systems display a diverse set of architectures, which motivate further studies in planetary dynamics. Part of the richness of this dynamical problem arises from the intrinsic complexity of $N$-body systems, even in the absence of additional forces. The realm of physical behavior experienced by such systems is enormous, and includes mean motion resonances (MMR), secular interactions, and sensitive dependence on the initial conditions (chaos). Additional complications arise from other forces that are often present: During the early stages of evolution, circumstellar disks provide torques that influence orbital elements, and turbulent fluctuations act on young planets. Over longer time scales, solar systems are affected by tidal forces from both stars and planets, and by general relativistic corrections that lead to orbital precession. This thesis addresses a subset of these dynamical problems, including the capture rates of planets into MMR, collision probabilities for migrating rocky planets interacting with Jovian planets, and the exploration of the ``nodding'' phenomenon (where systems move in and out of MMR). This latter effect can have important implications for interpreting transit timing variations (TTV), a method to detect smaller planets due to their interaction with larger transiting bodies.en_US
dc.language.isoen_USen_US
dc.subjectExoplanetsen_US
dc.subjectMean Motion Resonanceen_US
dc.subjectOrbital Dynamicsen_US
dc.titleDynamics of Convergent Migration and Mean Motion Resonances in Planetary Systems.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePhysicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBloch, Anthony M.en_US
dc.contributor.committeememberAdams, Fred C.en_US
dc.contributor.committeememberHartmann, Lee Williamen_US
dc.contributor.committeememberAmidei, Dante Ericen_US
dc.contributor.committeememberEvrard, Augusten_US
dc.contributor.committeememberLiu, James T.en_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107050/1/jaketchm_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.