Show simple item record

Melt and Glassy Dynamics in Complex Polymer Systems: Miscible Blends and Star-Shaped Polymer Films.

dc.contributor.authorFrieberg, Bradley Raymonden_US
dc.date.accessioned2014-06-02T18:14:17Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-06-02T18:14:17Z
dc.date.issued2014en_US
dc.date.submitted2014en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107054
dc.description.abstractConsiderable effort has been given towards using polymers as active materials in many types of organic devices such as photovoltaics, active membranes and sensors as well as drug delivery. A number of the applications of polymeric materials involve thin film geometries; therefore the role of interfacial interactions has garnered a lot of interest of late. However, the influence of interfaces on the physical properties of polymer films in not well understood. One such property is physical aging, which leads to a time-dependence of many properties, including: increased brittleness, enhanced modulus and reduced permeability. Therefore, there is a strong technological and scientific importance to understanding the underlying phenomenon behind this process. In this dissertation three classes of polymers are used in order to investigate the role of interfaces on the dynamic properties of polymer thin films: (1) glassy structural relaxation in star-shaped polymers, (2) free surface dynamics of miscible A/B polymer/polymer blends, and (3) polymer nanocomposites. The structural relaxation rate of polystyrene in the bulk and micron thick films is strongly influenced by the chain architecture. Due to the decreased conformational freedom, and entropic constraints of the chains grafted to a central core exhibited by the star-shaped molecules, the stars exhibit up to a 40% reduction in the relaxation rate relative to their linear counterparts. In the case of supported thin films, the thickness dependence of the structural relaxation rate can be described with a universal model that accounts for to the temperature dependence of the structural relaxation rate as well as the distribution in local Tg throughout the film. In a miscible A/B polymer blend and miscible blend nanocomposites, the local surface composition can vastly differ from the bulk. The lower surface tension of the B component will lead to a surface excess. Because of the differences in the composition near the surface, and the reduced friction coefficient in the vicinity of a particle, the polymer chain dynamics near that interface can be vastly different from that of the bulk. All of these findings have implications in the processing and long term implementation of polymer films in many different applications.en_US
dc.language.isoen_USen_US
dc.subjectPolymer Physicsen_US
dc.subjectThin Filmsen_US
dc.subjectStructural Relaxationen_US
dc.subjectPhysical Agingen_US
dc.subjectPolymer Nanocompositesen_US
dc.subjectPolymer Dynamicsen_US
dc.titleMelt and Glassy Dynamics in Complex Polymer Systems: Miscible Blends and Star-Shaped Polymer Films.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMacromolecular Science & Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberGreen, Peter F.en_US
dc.contributor.committeememberHart, Anastasios Johnen_US
dc.contributor.committeememberRobertson, Richard E.en_US
dc.contributor.committeememberTuteja, Anishen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107054/1/bfrieber_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.