Show simple item record

Collective Mechanochemical Growth of Carbon Nanotubes.

dc.contributor.authorBedewy, Mostafa M. K. M. A.en_US
dc.date.accessioned2014-06-02T18:15:32Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-06-02T18:15:32Z
dc.date.issued2014en_US
dc.date.submitted2013en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107179
dc.description.abstractHierarchically ordered carbon nanotubes (CNTs) are promising for integration in high-performance structural composites, electrical interconnects, thermal interfaces, and filtration membranes. These and other applications require CNTs that are monodisperse, well aligned, and densely packed. Moreover, because more than 1 billion CNTs per square centimeter grow simultaneously in a typical chemical vapor deposition (CVD) process, understanding the collective chemical and mechanical effects of growth is key to engineering the properties of CNT-based materials. This dissertation presents tailored synthesis processes, characterization techniques, and mathematical models that enable improved control of the morphology of as-grown CNT “forests.” First, a comprehensive characterization methodology, combining synchrotron X-ray scattering and attenuation with real-time height kinetics, enabled mapping the spatiotemporal evolution of CNT diameter distribution, alignment and density. By this method, the forest mass kinetics were measured and found to follow the S-shaped Gompertz curve of population growth. Dividing a forest into subpopulations revealed size-dependent activation-deactivation competition. Additionally, in situ transmission electron microscopy (TEM) showed that the kinetics of CNT nucleation are S-shaped. Based on these findings, a collective growth model is proposed, wherein randomly oriented CNTs first nucleate then self-organize and lift-off during a crowding stage, followed by a density decay stage until self-termination when the density drops below the self-supporting threshold. Next, further X-ray data analysis enabled modeling the mechanics of entangled CNTs and proved that mechanical coupling is not only responsible for the self-organization into the aligned morphology, but is also an important limiting mechanism as significant forces ensue from diameter-dependent CNT growth rates. A custom-built CVD system was used for mechanical manipulation of growing CNTs, leading to insights that external forces modulate the reaction kinetics. Last, a mathematical model describing the synergetic chemical coupling among growing CNT micropillars predicted height variations, and enables the design of CNT catalyst patterns for improved uniformity. The insights in this dissertation contribute to the fundamental understanding of self-organized CNT growth, enabling improved manufacturing and metrology. The models and techniques for studying population behavior of nanofilaments may also be applied to other systems, such as inorganic nanotubes, nanowires, and biofilaments.en_US
dc.language.isoen_USen_US
dc.subjectCarbon Nanotubes (CNT)en_US
dc.subjectChemical Vapor Deposition (CVD)en_US
dc.subjectSmall Angle X-ray Scattering (SAXS)en_US
dc.subjectNanomanufacturingen_US
dc.subjectNanoscale Metrologyen_US
dc.subjectMechanochemistryen_US
dc.titleCollective Mechanochemical Growth of Carbon Nanotubes.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberHart, A. Johnen_US
dc.contributor.committeememberSolomon, Michael J.en_US
dc.contributor.committeememberLiu, Allen Po-chihen_US
dc.contributor.committeememberStach, Eric A.en_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107179/1/mbedewy_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.