Show simple item record

Aging is associated with increased regulatory T ‐cell function

dc.contributor.authorGarg, Sanjay K.en_US
dc.contributor.authorDelaney, Colinen_US
dc.contributor.authorToubai, Tomomien_US
dc.contributor.authorGhosh, Amiyaen_US
dc.contributor.authorReddy, Pavanen_US
dc.contributor.authorBanerjee, Rumaen_US
dc.contributor.authorYung, Raymonden_US
dc.date.accessioned2014-06-04T14:57:00Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-06-04T14:57:00Z
dc.date.issued2014-06en_US
dc.identifier.citationGarg, Sanjay K.; Delaney, Colin; Toubai, Tomomi; Ghosh, Amiya; Reddy, Pavan; Banerjee, Ruma; Yung, Raymond (2014). "Aging is associated with increased regulatory T ‐cell function." Aging Cell 13(3): 441-448.en_US
dc.identifier.issn1474-9718en_US
dc.identifier.issn1474-9726en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107355
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAgingen_US
dc.subject.otherMethylationen_US
dc.subject.otherRedoxen_US
dc.subject.otherRegulatory T Cellen_US
dc.subject.otherEpigeneticsen_US
dc.titleAging is associated with increased regulatory T ‐cell functionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107355/1/acel12191.pdf
dc.identifier.doi10.1111/acel.12191en_US
dc.identifier.sourceAging Cellen_US
dc.identifier.citedreferenceRoncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK ( 2006 ) Interleukin‐10‐secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28 – 50.en_US
dc.identifier.citedreferenceHuehn J, Polansky JK, Hamann A ( 2009 ) Epigenetic control of FOXP3 expression: the key to a stable regulatory T‐cell lineage? Nat. Rev. Immunol. 9, 83 – 89.en_US
dc.identifier.citedreferenceKarouzakis E, Gay RE, Gay S, Neidhart M ( 2011 ) Epigenetic deregulation in rheumatoid arthritis. Adv. Exp. Med. Biol. 711, 137 – 149.en_US
dc.identifier.citedreferenceLal G, Bromberg JS ( 2009 ) Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114, 3727 – 3735.en_US
dc.identifier.citedreferenceMendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y ( 2004 ) Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J. Exp. Med. 200, 201 – 210.en_US
dc.identifier.citedreferenceMessina JP, Lawrence DA ( 1989 ) Cell cycle progression of glutathione‐depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 143, 1974 – 1981.en_US
dc.identifier.citedreferenceMisra N, Bayry J, Lacroix‐Desmazes S, Kazatchkine MD, Kaveri SV ( 2004 ) Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen‐presenting function of dendritic cells. J Immunol 172, 4676 – 4680.en_US
dc.identifier.citedreferenceNagel JE, Chopra RK, Chrest FJ, McCoy MT, Schneider EL, Holbrook NJ, Adler WH ( 1988 ) Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin‐stimulated cells from elderly donors. J Clin Invest 81, 1096 – 1102.en_US
dc.identifier.citedreferenceNikolich‐Zugich J ( 2008 ) Ageing and life‐long maintenance of T‐cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 8, 512 – 522.en_US
dc.identifier.citedreferencePandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ ( 2007 ) CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation‐mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353 – 1362.en_US
dc.identifier.citedreferenceRaynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA ( 2012 ) Homeostasis and function of regulatory T cells in aging. Curr. Opin. Immunol. 24, 482 – 487.en_US
dc.identifier.citedreferenceRichardson BC ( 2002 ) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr. 132, 2401S – 2405S.en_US
dc.identifier.citedreferenceSharma S, Dominguez AL, Lustgarten J ( 2006 ) High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J Immunol 177, 8348 – 8355.en_US
dc.identifier.citedreferenceShevach EM ( 2009 ) Mechanisms of foxp3+ T regulatory cell‐mediated suppression. Immunity 30, 636 – 645.en_US
dc.identifier.citedreferenceSlavik JM, Hutchcroft JE, Bierer BE ( 1999 ) CD28/CTLA‐4 and CD80/CD86 families: signaling and function. Immunol. Res. 19, 1 – 24.en_US
dc.identifier.citedreferenceStaal FJ ( 1998 ) Glutathione and HIV infection: reduced reduced, or increased oxidized? Eur. J. Clin. Invest. 28, 194 – 196.en_US
dc.identifier.citedreferenceSuthanthiran M, Anderson ME, Sharma VK, Meister A ( 1990 ) Glutathione regulates activation‐dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc. Natl Acad. Sci. USA 87, 3343 – 3347.en_US
dc.identifier.citedreferenceTang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P, Santamaria P, Locksley RM, Krummel MF, Bluestone JA ( 2006 ) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83 – 92.en_US
dc.identifier.citedreferenceThornton AM, Shevach EM ( 1998 ) CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287 – 296.en_US
dc.identifier.citedreferenceTian L, Humblet‐Baron S, Liston A ( 2012 ) Immune tolerance: are regulatory T cell subsets needed to explain suppression of autoimmunity? BioEssays 34, 569 – 575.en_US
dc.identifier.citedreferenceVignali DA, Collison LW, Workman CJ ( 2008 ) How regulatory T cells work. Nat. Rev. Immunol. 8, 523 – 532.en_US
dc.identifier.citedreferenceYan Z, Banerjee R ( 2010 ) Redox remodeling as an immunoregulatory strategy. Biochemistry 49, 1059 – 1066.en_US
dc.identifier.citedreferenceYan Z, Garg SK, Kipnis J, Banerjee R ( 2009 ) Extracellular redox modulation by regulatory T cells. Nat. Chem. Biol. 5, 721 – 723.en_US
dc.identifier.citedreferenceYan Z, Garg SK, Banerjee R ( 2010 ) Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J. Biol. Chem. 285, 41525 – 41532.en_US
dc.identifier.citedreferenceAgrawal A, Tay J, Yang GE, Agrawal S, Gupta S ( 2010 ) Age‐associated epigenetic modifications in human DNA increase its immunogenicity. Aging (Albany NY) 2, 93 – 100.en_US
dc.identifier.citedreferenceAngelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A ( 2002 ) Antigen‐presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99, 1491 – 1496.en_US
dc.identifier.citedreferenceCannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L ( 2011 ) Oxidative stress, inflamm‐aging and immunosenescence. J Proteomics 74, 2313 – 2323.en_US
dc.identifier.citedreferenceCastellani P, Angelini G, Delfino L, Matucci A, Rubartelli A ( 2008 ) The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur. J. Immunol. 38, 2419 – 2425.en_US
dc.identifier.citedreferenceCederbom L, Hall H, Ivars F ( 2000 ) CD4+ CD25+ regulatory T cells down‐regulate co‐stimulatory molecules on antigen‐presenting cells. Eur. J. Immunol. 30, 1538 – 1543.en_US
dc.identifier.citedreferenceChiu BC, Stolberg VR, Zhang H, Chensue SW ( 2007 ) Increased Foxp3(+) Treg cell activity reduces dendritic cell co‐stimulatory molecule expression in aged mice. Mech. Ageing Dev. 128, 618 – 627.en_US
dc.identifier.citedreferenceCoffman RL, Lebman DA, Shrader B ( 2009 ) Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide‐stimulated murine B lymphocytes. J. Exp. Med. 1989. 170: 1039–1044. J Immunol 182, 8 – 13.en_US
dc.identifier.citedreferenceCollison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA ( 2007 ) The inhibitory cytokine IL‐35 contributes to regulatory T‐cell function. Nature 450, 566 – 569.en_US
dc.identifier.citedreferenceDelaney C, Hoeltzel M, Garg SK, Warner R, Johnson K, Yung R ( 2012 ) Maternal micronutrient supplementation suppresses T cell chemokine receptor expression and function in f1 mice. J. Nutr. 142, 1329 – 1335.en_US
dc.identifier.citedreferenceEffros RB ( 1997 ) Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev. Comp. Immunol. 21, 471 – 478.en_US
dc.identifier.citedreferenceFallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P ( 2003 ) Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206 – 1212.en_US
dc.identifier.citedreferenceGarg S, Vitvitsky V, Gendelman HE, Banerjee R ( 2006 ) Monocyte differentiation, activation, and mycobacterial killing are linked to transsulfuration‐dependent redox metabolism. J. Biol. Chem. 281, 38712 – 38720.en_US
dc.identifier.citedreferenceGarg SK, Banerjee R, Kipnis J ( 2008 ) Neuroprotective immunity: T cell‐derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 180, 3866 – 3873.en_US
dc.identifier.citedreferenceGarg SK, Yan Z, Vitvitsky V, Banerjee R ( 2011 ) Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid. Redox Signal. 15, 39 – 47.en_US
dc.identifier.citedreferenceGowers IR, Walters K, Kiss‐Toth E, Read RC, Duff GW, Wilson AG ( 2011 ) Age‐related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine 56, 792 – 797.en_US
dc.identifier.citedreferenceGregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, Nayak L, Moss PA ( 2005 ) The number of human peripheral blood CD4+ CD25 high regulatory T cells increases with age. Clin. Exp. Immunol. 140, 540 – 546.en_US
dc.identifier.citedreferenceGrimble RF ( 2006 ) The effects of sulfur amino acid intake on immune function in humans. J. Nutr. 136, 1660S – 1665S.en_US
dc.identifier.citedreferenceHan GM, Zhao B, Jeyaseelan S, Feng JM ( 2009 ) Age‐associated parallel increase of Foxp3(+)CD4(+) regulatory and CD44(+)CD4(+) memory T cells in SJL/J mice. Cell. Immunol. 258, 188 – 196.en_US
dc.identifier.citedreferenceHori S, Nomura T, Sakaguchi S ( 2003 ) Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057 – 1061.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.