Show simple item record

Deterministic functions of cortical acetylcholine

dc.contributor.authorSarter, Martinen_US
dc.contributor.authorLustig, Cindyen_US
dc.contributor.authorHowe, William M.en_US
dc.contributor.authorGritton, Howarden_US
dc.contributor.authorBerry, Anne S.en_US
dc.date.accessioned2014-06-04T14:57:08Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-06-04T14:57:08Z
dc.date.issued2014-06en_US
dc.identifier.citationSarter, Martin; Lustig, Cindy; Howe, William M.; Gritton, Howard; Berry, Anne S. (2014). "Deterministic functions of cortical acetylcholine." European Journal of Neuroscience 39(11): 1912-1920.en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107385
dc.description.abstractTraditional descriptions of the basal forebrain cholinergic projection system to the cortex have focused on neuromodulatory influences, that is, mechanisms that modulate cortical information processing but are not necessary for mediating discrete behavioral responses and cognitive operations. This review summarises and conceptualises the evidence in support of more deterministic contributions of cholinergic projections to cortical information processing. Through presynaptic receptors expressed on cholinergic terminals, thalamocortical and corticocortical projections can evoke brief cholinergic release events. These acetylcholine ( AC h) release events occur on a fast, sub‐second to seconds‐long time scale (‘transients’). In rats performing a task requiring the detection of cues as well as the report of non‐cue events cholinergic transients mediate the detection of cues specifically in trials that involve a shift from a state of monitoring for cues to cue‐directed responding. Accordingly, ill‐timed cholinergic transients, generated using optogenetic methods, force false detections in trials without cues. We propose that the evidence is consistent with the hypothesis that cholinergic transients reduce detection uncertainty in such trials. Furthermore, the evidence on the functions of the neuromodulatory component of cholinergic neurotransmission suggests that higher levels of neuromodulation favor staying‐on‐task over alternative action. In other terms, higher cholinergic neuromodulation reduces opportunity costs. Evidence indicating a similar integration of other ascending projection systems, including noradrenergic and serotonergic systems, into cortical circuitry remains sparse, largely because of the limited information about local presynaptic regulation and the limitations of current techniques in measuring fast and transient neurotransmitter release events in these systems. Traditional descriptions of the basal forebrain cholinergic projection system to the cortex focused on neuromodulatory influences, that is, mechanisms that modulate cortical information processing but are not necessary for mediating discrete behavioral responses and cognitive operations. This review summarises and conceptualises the evidence in support of more deterministic contributions of cholinergic projections to cortical information processing.en_US
dc.publisherVrije Universiteit Brusselsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSerotoninen_US
dc.subject.otherAcetylcholineen_US
dc.subject.otherAttentionen_US
dc.subject.otherCortexen_US
dc.subject.otherNeuromodulationen_US
dc.subject.otherNoradrenalineen_US
dc.titleDeterministic functions of cortical acetylcholineen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107385/1/ejn12515.pdf
dc.identifier.doi10.1111/ejn.12515en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceRodriguez, R., Kallenbach, U., Singer, W. & Munk, M.H. ( 2010 ) Stabilization of visual responses through cholinergic activation. Neuroscience, 165, 944 – 954.en_US
dc.identifier.citedreferenceSara, S. & Bouret, S. ( 2012 ) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 76, 130 – 141.en_US
dc.identifier.citedreferenceSarter, M., Gehring, W.J. & Kozak, R. ( 2006 ) More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev., 51, 145 – 160.en_US
dc.identifier.citedreferenceSarter, M., Parikh, V. & Howe, W.M. ( 2009 ) Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci., 10, 383 – 390.en_US
dc.identifier.citedreferenceSarter, M., Parikh, V., Howe, M.W., Gritton, H., Paolone, G. & Lee, T.M. ( 2010 ) Multiple time scales and variable spaces: synaptic neurotransmission in vivo. In Westerink, B., Clinckers, R., Smolders, I., Sarre, S. & Michotte, Y. (Eds), Monitoring Molecules in Neuroscience. Vrije Universiteit Brussels, Brussels, Belgium, pp. 7 – 9.en_US
dc.identifier.citedreferenceSarter, M., Lustig, C. & Taylor, S.F. ( 2012 ) Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology, 62, 1544 – 1553. PMID: 21156184.en_US
dc.identifier.citedreferenceSchicker, K.W., Dorostkar, M.M. & Boehm, S. ( 2008 ) Modulation of transmitter release via presynaptic ligand‐gated ion channels. Curr. Mol. Pharmacol., 1, 106 – 129.en_US
dc.identifier.citedreferenceSchliebs, R. & Arendt, T. ( 2011 ) The cholinergic system in aging and neuronal degeneration. Behav. Brain Res., 221, 555 – 563.en_US
dc.identifier.citedreferenceSchneider, T.R., Lorenz, S., Senkowski, D. & Engel, A.K. ( 2011 ) Gamma‐Band activity as a signature for cross‐modal priming of auditory object recognition by active haptic exploration. J. Neurosci., 31, 2502 – 2510.en_US
dc.identifier.citedreferenceSenkowski, D., Schneider, T.R., Foxe, J.J. & Engel, A.K. ( 2008 ) Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci., 31, 401 – 409.en_US
dc.identifier.citedreferenceSt Peters, M., Demeter, E., Lustig, C., Bruno, J.P. & Sarter, M. ( 2011 ) Enhanced control of attention by stimulating mesolimbic‐corticopetal cholinergic circuitry. J. Neurosci., 31, 9760 – 9771.en_US
dc.identifier.citedreferenceSun, Y.G., Pita‐Almenar, J.D., Wu, C.S., Renger, J.J., Uebele, V.N., Lu, H.C. & Beierlein, M. ( 2013 ) Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. J. Neurosci., 33, 2048 – 2059.en_US
dc.identifier.citedreferenceTurchi, J. & Sarter, M. ( 1997 ) Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Brain Res. Cogn. Brain Res., 6, 147 – 158.en_US
dc.identifier.citedreferenceUnal, C.T., Golowasch, J.P. & Zaborszky, L. ( 2012 ) Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Front. Behav. Neurosci., 6, 21.en_US
dc.identifier.citedreferenceVarela, C. ( 2013 ) The gating of neocortical information by modulators. J. Neurophysiol., 109, 1229 – 1232.en_US
dc.identifier.citedreferenceWaselus, M., Valentino, R.J. & Van Bockstaele, E.J. ( 2011 ) Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J. Chem. Neuroanat., 41, 266 – 280.en_US
dc.identifier.citedreferenceWenk, G.L. ( 1997 ) The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol. Learn. Mem., 67, 85 – 95.en_US
dc.identifier.citedreferenceXiang, Z., Huguenard, J.R. & Prince, D.A. ( 1998 ) Cholinergic switching within neocortical inhibitory networks. Science, 281, 985 – 988.en_US
dc.identifier.citedreferenceYu, A.J. & Dayan, P. ( 2005 ) Uncertainty, neuromodulation and attention. Neuron, 46, 681 – 691.en_US
dc.identifier.citedreferenceZaborszky, L. ( 2002 ) The modular organization of brain systems. Basal forebrain: the last frontier. Prog. Brain Res., 136, 359 – 372.en_US
dc.identifier.citedreferenceZaborszky, L., Buhl, D.L., Pobalashingham, S., Bjaalie, J.G. & Nadasdy, Z. ( 2005 ) Three‐dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein‐containing neurons. Neuroscience, 136, 697 – 713.en_US
dc.identifier.citedreferenceZaborszky, L., Hoemke, L., Mohlberg, H., Schleicher, A., Amunts, K. & Zilles, K. ( 2008 ) Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage, 42, 1127 – 1141.en_US
dc.identifier.citedreferenceZaborszky, L., van den Pol, A. & Gyengesi, E. ( 2012 ) The basal forebrain cholinergic projection system in mice. In Watson, C., Paxinos, G. & Puelles, L. (Eds), The Mouse Nervous System. Academic Press, San Diego, CA, pp. 684 – 718.en_US
dc.identifier.citedreferenceZaborszky, L., Csordas, C., Mosca, K., Kim, J., Gielow, M.R., Vasdasz, C. & Nadasdy, Z. ( 2013 ) Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb. Cortex, PMID: 23964066. [Epub ahead of print].en_US
dc.identifier.citedreferenceZmarowksi, A., Sarter, M. & Bruno, J.P. ( 2005 ) NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur. J. Neurosci., 22, 1731 – 1740.en_US
dc.identifier.citedreferenceArnold, H.M., Burk, J.A., Hodgson, E., Sarter, M. & Bruno, J.P. ( 2002 ) Differential increases in cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience, 114, 451 – 460.en_US
dc.identifier.citedreferenceAston‐Jones, G. & Cohen, J.D. ( 2005 ) An integrative theory of locus coeruleus‐norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403 – 450.en_US
dc.identifier.citedreferenceAznar, S. & Klein, A.B. ( 2013 ) Regulating prefrontal cortex activation: an emerging role for the 5‐HT2A serotonin receptor in the modulation of emotion‐based actions? Mol. Neurobiol., 48, 841 – 853.en_US
dc.identifier.citedreferenceBeani, L., Tanganelli, S., Antonelli, T. & Bianchi, C. ( 1986 ) Noradrenergic modulation of cortical acetylcholine release is both direct and gamma‐aminobutyric acid‐mediated. J. Pharmacol. Exp. Ther., 236, 230 – 236.en_US
dc.identifier.citedreferenceBerridge, C.W. & Arnsten, A.F. ( 2013 ) Psychostimulants and motivated behavior: arousal and cognition. Neurosci. Biobehav. R., 37, 1976 – 1984.en_US
dc.identifier.citedreferenceBerry, A.S., St. Peters, M.M., Uremek, N., Gritton, H., Grupe, M., Mirza, N.R. & Sarter, M. ( 2011 ) Selective GABA Inverse Agonist RO4938581 Modulates Nicotine‐Evoked Transients in Prefrontal Cortex. Paper presented at the Society for Neuroscience Annual Meeting Soc. Neurosci. Ann. Meeting, Washington, DC.en_US
dc.identifier.citedreferenceBerry, A.S., Isaacs, Y., Demeter, E., Blakely, R.D., Sarter, M. & Lustig, C. ( 2013 ) Selective Vulnerability to Distraction Associated with Choline Transporter Gene. Cogn. Neurosci. Soc. Ann. Meeting, San Francisco, CA.en_US
dc.identifier.citedreferenceBonanno, G., Ruelle, A., Andrioli, G.C. & Raiteri, M. ( 1991 ) Cholinergic nerve terminals of human cerebral cortex possess a GABA transporter whose activation induces release of acetylcholine. Brain Res., 539, 191 – 195.en_US
dc.identifier.citedreferenceBotly, L.C. & De Rosa, E. ( 2009 ) Cholinergic deafferentation of the neocortex using 192 IgG‐saporin impairs feature binding in rats. J. Neurosci., 29, 4120 – 4130.en_US
dc.identifier.citedreferenceBriand, L.A., Gritton, H., Howe, W.M., Young, D.A. & Sarter, M. ( 2007 ) Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog. Neurobiol., 83, 69 – 91.en_US
dc.identifier.citedreferenceBriggs, F., Mangun, G.R. & Usrey, W.M. ( 2013 ) Attention enhances synaptic efficacy and the signal‐to‐noise ratio in neural circuits. Nature, 499, 476 – 480.en_US
dc.identifier.citedreferenceChandler, D.J., Lamperski, C.S. & Waterhouse, B.D. ( 2013 ) Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res., 1522, 38 – 58.en_US
dc.identifier.citedreferenceDalley, J.W., Theobald, D.E., Bouger, P., Chudasama, Y., Cardinal, R.N. & Robbins, T.W. ( 2004 ) Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG‐saporin‐induced lesions of the medial prefrontal cortex. Cereb. Cortex, 14, 922 – 932.en_US
dc.identifier.citedreferenceDayan, P. ( 2012 ) Twenty‐five lessons from computational neuromodulation. Neuron, 76, 240 – 256.en_US
dc.identifier.citedreferenceDayan, P. & Yu, A.J. ( 2006 ) Phasic norepinephrine: a neural interrupt signal for unexpected events. Network, 17, 335 – 350.en_US
dc.identifier.citedreferenceDeco, G. & Thiele, A. ( 2011 ) Cholinergic control of cortical network interactions enables feedback‐mediated attentional modulation. Eur. J. Neurosci., 34, 146 – 157.en_US
dc.identifier.citedreferenceDescarries, L. ( 1998 ) The hypothesis of an ambient level of acetylcholine in the central nervous system. J. Physiol. Paris, 92, 215 – 220.en_US
dc.identifier.citedreferenceDisney, A.A. & Aoki, C. ( 2008 ) Muscarinic acetylcholine receptors in macaque V1 are most frequently expressed by parvalbumin‐immunoreactive neurons. J. Comp. Neurol., 507, 1748 – 1762.en_US
dc.identifier.citedreferenceDisney, A.A., Aoki, C. & Hawken, M.J. ( 2012 ) Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition. J. Neurophysiol., 108, 1907 – 1923.en_US
dc.identifier.citedreferenceEggermann, E. & Feldmeyer, D. ( 2009 ) Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proc. Natl. Acad. Sci. USA, 106, 11753 – 11758.en_US
dc.identifier.citedreferenceEgorov, A.V., Hamam, B.N., Fransen, E., Hasselmo, M.E. & Alonso, A.A. ( 2002 ) Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173 – 178.en_US
dc.identifier.citedreferenceEngel, A.K. & Singer, W. ( 2001 ) Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci., 5, 16 – 25.en_US
dc.identifier.citedreferenceEspaña, R.A. & Berridge, C.W. ( 2006 ) Organization of noradrenergic efferents to arousal‐related basal forebrain structures. J. Comp. Neurol., 496, 668 – 683.en_US
dc.identifier.citedreferenceFallon, J.H. & Loughlin, S.E. ( 1982 ) Monoamine innervation of the forebrain: collateralization. Brain Res. Bull., 9, 295 – 307.en_US
dc.identifier.citedreferenceFan, J., Byrne, J., Worden, M.S., Guise, K.G., McCandliss, B.D., Fossella, J. & Posner, M.I. ( 2007 ) The relation of brain oscillations to attentional networks. J. Neurosci., 27, 6197 – 6206.en_US
dc.identifier.citedreferenceFries, P. ( 2005 ) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci., 9, 474 – 480.en_US
dc.identifier.citedreferenceGioanni, Y., Rougeot, C., Clarke, P.B., Lepousé, C., Thierry, A.M. & Vidal, C. ( 1999 ) Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo‐cortical transmission. Eur. J. Neurosci., 11, 18 – 30.en_US
dc.identifier.citedreferenceGiorgetti, M., Bacciottini, L., Giovannini, M.G., Colivicchi, M.A., Goldfarb, J. & Blandina, P. ( 2000 ) Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur. J. Neurosci., 12, 1941 – 1948.en_US
dc.identifier.citedreferenceGiuliano, C., Parikh, V., Ward, J.R., Chiamulera, C. & Sarter, M. ( 2008 ) Increases in cholinergic neurotransmission measured by using choline‐sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem. Int., 52, 1343 – 1350.en_US
dc.identifier.citedreferenceGulledge, A.T., Bucci, D.J., Zhang, S.S., Matsui, M. & Yeh, H.H. ( 2009 ) M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. J. Neurosci., 29, 9888 – 9902.en_US
dc.identifier.citedreferenceHasselmo, M.E. & Bower, J.M. ( 1992 ) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophysiol., 67, 1222 – 1229.en_US
dc.identifier.citedreferenceHasselmo, M.E. & Sarter, M. ( 2011 ) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology, 36, 52 – 73.en_US
dc.identifier.citedreferenceHimmelheber, A.M., Sarter, M. & Bruno, J.P. ( 2001 ) The effects of manipulations of attentional demand on cortical acetylcholine release. Brain Res. Cogn. Brain Res., 12, 353 – 370.en_US
dc.identifier.citedreferenceHornung, J.P. ( 2003 ) The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat., 26, 331 – 343.en_US
dc.identifier.citedreferenceHowe, W.M., Ji, J., Parikh, V., Williams, S., Mocaër, E., Trocmé‐Thibierge, C. & Sarter, M. ( 2010 ) Enhancement of attentional performance by selective stimulation of alpha4beta2* nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology, 35, 1391 – 1401.en_US
dc.identifier.citedreferenceHowe, W.M., Gritton, H., Berke, J. & Sarter, M. ( 2011 ) Attention‐demanding cues evoke prefrontal gamma oscillations and are differentially modulated by prefrontal muscarinic and nicotinic receptors. Soc. f. Neurosci. Ann. Meet. (abstract # 197.09).en_US
dc.identifier.citedreferenceHowe, W.M., Berry, A.S., Francois, J., Gilmour, G., Carp, J.M., Tricklebank, M., Lustig, C. & Sarter, M. ( 2013 ) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue‐guided performance: converging electrochemical and fMRI evidence from rats and humans. J. Neurosci., 33, 8742 – 8752.en_US
dc.identifier.citedreferenceHowells, F.M., Stein, D.J. & Russell, V.A. ( 2012 ) Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC‐NE) arousal system is required for optimal attentional performance. Metab. Brain Dis., 27, 267 – 274.en_US
dc.identifier.citedreferenceKlink, R. & Alonso, A. ( 1997 ) Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J. Neurophysiol., 77, 1813 – 1828.en_US
dc.identifier.citedreferenceKozak, R., Bruno, J.P. & Sarter, M. ( 2006 ) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb. Cortex, 16, 9 – 17.en_US
dc.identifier.citedreferenceKruglikov, I. & Rudy, B. ( 2008 ) Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron, 58, 911 – 924.en_US
dc.identifier.citedreferenceKunz, P.A., Roberts, A.C. & Philpot, B.D. ( 2013 ) Presynaptic NMDA receptor mechanisms for enhancing spontaneous neurotransmitter release. J. Neurosci., 33, 7762 – 7769.en_US
dc.identifier.citedreferenceKurzban, R., Duckworth, A., Kable, J.W. & Myers, J. ( 2013 ) An opportunity cost model of subjective effort and task performance. Behav. Brain Sci., 36, 661 – 679.en_US
dc.identifier.citedreferenceLambe, E.K., Picciotto, M.R. & Aghajanian, G.K. ( 2003 ) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology, 28, 216 – 225.en_US
dc.identifier.citedreferenceLee, S.H. & Dan, Y. ( 2012 ) Neuromodulation of brain states. Neuron, 76, 209 – 222.en_US
dc.identifier.citedreferenceLuck, S.J., Ford, J.M., Sarter, M. & Lustig, C. ( 2012 ) CNTRICS final biomarker selection: control of attention. Schizophrenia. Bull., 38, 53 – 61.en_US
dc.identifier.citedreferenceMacDermott, A.B., Role, L.W. & Siegelbaum, S.A. ( 1999 ) Presynaptic ionotropic receptors and control of transmitter release. Nat. Rev. Neurosci., 22, 443 – 485.en_US
dc.identifier.citedreferenceMarder, E. ( 2012 ) Neuromodulation of neuronal circuits: back to the future. Neuron, 76, 1 – 11.en_US
dc.identifier.citedreferenceMcGaughy, J., Turchi, J. & Sarter, M. ( 1994 ) Crossmodal divided attention in rats: effects of chlordiazepoxide and scopolamine. Psychopharmacology, 115, 213 – 220.en_US
dc.identifier.citedreferenceMcGaughy, J., Kaiser, T. & Sarter, M. ( 1996 ) Behavioral vigilance following infusions of 192 IgG‐saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical ache‐positive fiber density. Behav. Neurosci., 110, 247 – 265.en_US
dc.identifier.citedreferenceMoran, R.J., Campo, P., Symmonds, M., Stephan, K.E., Dolan, R.J. & Friston, K.J. ( 2013 ) Free energy, precision and learning: the role of cholinergic neuromodulation. J. Neurosci., 33, 8227 – 8236.en_US
dc.identifier.citedreferenceMoroni, F., Tanganelli, S., Antonelli, T., Carla, V., Bianchi, C. & Beani, L. ( 1983 ) Modulation of cortical acetylcholine and gamma‐aminobutyric acid release in freely moving guinea pigs: effects of clonidine and other adrenergic drugs. J. Pharmacol. Exp. Ther., 227, 435 – 440.en_US
dc.identifier.citedreferenceMuir, J.L., Dunnett, S.B., Robbins, T.W. & Everitt, B.J. ( 1992 ) Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple‐choice serial reaction time task. Exp. Brain Res., 89, 611 – 622.en_US
dc.identifier.citedreferenceNeigh, G., Arnold, M.H., Rabenstein, R., Sarter, M. & Bruno, J.P. ( 2004 ) Neuronal activity in the nucleus accumbens is necessary for performance‐related increases in cortical acetylcholine release. Neuroscience, 123, 635 – 645.en_US
dc.identifier.citedreferenceNuechterlein, K.H., Luck, S.J., Lustig, C. & Sarter, M. ( 2009 ) CNTRICS final task selection: control of attention. Schizophrenia. Bull., 35, 182 – 196.en_US
dc.identifier.citedreferencePaolone, G., Howe, M.W., Gopalakrishnan, M., Decker, M.W. & Sarter, M. ( 2010 ) Regulation and function of the tonic component of cortical acetylcholine release. In Westerink, B., Clinckers, R., Smolders, I., Sarre, S. & Michotte, Y. (Eds), Monitoring Molecules in Neuroscience. Vrije Universiteit Brussels, Brussels, Belgium, pp. 363 – 365.en_US
dc.identifier.citedreferencePaolone, G., Angelakos, C.C., Meyer, P., Robinson, T.E. & Sarter, M. ( 2013 ) Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J. Neurosci., 33, 8321 – 8335.en_US
dc.identifier.citedreferenceParikh, V. & Sarter, M. ( 2008 ) Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann. NY. Acad. Sci., 1129, 225 – 235.en_US
dc.identifier.citedreferenceParikh, V., Kozak, R., Martinez, V. & Sarter, M. ( 2007 ) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron, 56, 141 – 154.en_US
dc.identifier.citedreferenceParikh, V., Man, K., Decker, M.W. & Sarter, M. ( 2008 ) Glutamatergic contributions to nicotinic acetylcholine receptor agonist‐evoked cholinergic transients in the prefrontal cortex. J. Neurosci., 28, 3769 – 3780.en_US
dc.identifier.citedreferenceParikh, V., Ji, J., Decker, M.W. & Sarter, M. ( 2010 ) Prefrontal beta2 subunit‐containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J. Neurosci., 30, 3518 – 3530.en_US
dc.identifier.citedreferencePassetti, F., Dalley, J.W., O'Connell, M.T., Everitt, B.J. & Robbins, T.W. ( 2000 ) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur. J. Neurosci., 12, 3051 – 3058.en_US
dc.identifier.citedreferencePerry, R.J. & Hodges, J.R. ( 1999 ) Attention and executive deficits in Alzheimer's disease. A critical review. Brain, 122, 383 – 404.en_US
dc.identifier.citedreferencePicciotto, M., Higley, M. & Mineur, Y. ( 2012 ) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76, 116 – 129.en_US
dc.identifier.citedreferencePosner, M.I., Snyder, C.R. & Davidson, B.J. ( 1980 ) Attention and the detection of signals. J. Exp. Psychol., 109, 160 – 174.en_US
dc.identifier.citedreferenceRamírez, M.J., Cenarruzabeitia, E., Lasheras, B. & Del Río, J. ( 1996 ) Involvement of GABA systems in acetylcholine release induced by 5‐HT3 receptor blockade in slices from rat entorhinal cortex. Brain Res., 712, 274 – 280.en_US
dc.identifier.citedreferenceRobbins, T.W. & Everitt, B.J. ( 1995 ) Arousal systems and attention. In Gazzaniga, M.S. (Ed.), The Cognitive Neurosciences. MIT Press, Cambridge, MA, pp. 703 – 720.en_US
dc.identifier.citedreferenceRodriguez, R., Kallenbach, U., Singer, W. & Munk, M.H. ( 2004 ) Short‐ and long‐term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J. Neurosci., 24, 10369 – 10378.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.