Show simple item record

Structural evolution and membrane interactions of Alzheimer's amyloid‐beta peptide oligomers: New knowledge from single‐molecule fluorescence studies

dc.contributor.authorJohnson, Robin D.en_US
dc.contributor.authorSteel, Duncan G.en_US
dc.contributor.authorGafni, Arien_US
dc.date.accessioned2014-07-03T14:41:12Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:12Z
dc.date.issued2014-07en_US
dc.identifier.citationJohnson, Robin D.; Steel, Duncan G.; Gafni, Ari (2014). "Structural evolution and membrane interactions of Alzheimer's amyloid‐beta peptide oligomers: New knowledge from single‐molecule fluorescence studies." Protein Science 23(7): 869-883.en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107477
dc.description.abstractAmyloid‐β peptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single‐molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid‐β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar‐to‐picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single‐molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ‐induced toxicity, is included in hopes of inspiring future development in this area of research.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAmyloid‐Beta Peptideen_US
dc.subject.otherOligomersen_US
dc.subject.otherSingle‐Molecule Microscopyen_US
dc.subject.otherFluorescenceen_US
dc.subject.otherPeptide‐Membrane Interactionen_US
dc.subject.otherAlzheimer's Diseaseen_US
dc.titleStructural evolution and membrane interactions of Alzheimer's amyloid‐beta peptide oligomers: New knowledge from single‐molecule fluorescence studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107477/1/pro2479.pdf
dc.identifier.doi10.1002/pro.2479en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceNarayan P, Meehan S, Carver J A, Wilson MR, Dobson CM, Klenerman D ( 2012 ) Amyloid‐β oligomers are sequestered by both intracellular and extracellular chaperones. Biochemistry 51: 9270 – 9276.en_US
dc.identifier.citedreferenceDahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ ( 2002 ) Oligomeric and fibrillar species of amyloid‐β peptides differentially affect neuronal viability. J Biol Chem 277: 32046 – 32053.en_US
dc.identifier.citedreferenceSimakova O, Arispe NJ ( 2006 ) Early and late cytotoxic effects of external application of the Alzheimer's Aβ result from the initial formation and function of Aβ ion channels. Biochemistry 45: 5907 – 5915.en_US
dc.identifier.citedreferenceJan A, Gokce O, Luthi‐Carter R, Lashuel HA ( 2008 ) The ratio of monomeric to aggregated forms of Aβ40 and Aβ42 is an important determinant of amyloid‐β aggregation, fibrillogenesis, and toxicity. J Biol Chem 283: 28176 – 28189.en_US
dc.identifier.citedreferenceKuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Segers‐nolten I, Werf K Van Der, Subramaniam V, Braeken D, et al. ( 2010 ) Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J 29: 3408 – 3420.en_US
dc.identifier.citedreferenceLi S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ ( 2011 ) Soluble Aβ oligomers inhibit long‐term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B‐containing NMDA receptors. J Neurosci 31: 6627 – 6638.en_US
dc.identifier.citedreferenceVarghese K, Molnar P, Das M, Bhargava N, Lambert S, S M, Hickman JJ ( 2010 ) A new target for amyloid beta toxicity validated by standard and high‐throughput electrophysiology. Changes 5: 1 – 8.en_US
dc.identifier.citedreferenceWu H‐Y, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires‐Jones T, Xie H, Arbel‐Ornath M, Grosskreutz CL, et al. ( 2010 ) Amyloid β induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30: 2636 – 2649.en_US
dc.identifier.citedreferenceDemuro A, Smith M, Parker I ( 2011 ) Single‐channel Ca(2+) imaging implicates Aβ1–42 amyloid pores in Alzheimer's disease pathology. J Cell Biol 195: 515 – 524.en_US
dc.identifier.citedreferenceDing H, Schauerte J A, Steel DG, Gafni A ( 2012 ) β‐Amyloid (1–40) peptide interactions with supported phospholipid membranes: a single‐molecule study. Biophys J 103: 1500 – 1509.en_US
dc.identifier.citedreferenceJohnson RD, Schauerte J A, Chang C‐C, Wisser KC, Althaus JC, Carruthers CJL, Sutton M A, Steel DG, Gafni A ( 2013 ) Single‐molecule imaging reveals aβ42:aβ40 ratio‐dependent oligomer growth on neuronal processes. Biophys J 104: 894 – 903.en_US
dc.identifier.citedreferenceZhang Y‐J, Shi J‐M, Bai C‐J, Wang H, Li H‐Y, Wu Y, Ji S‐R ( 2012 ) Intra‐membrane oligomerization and extra‐membrane oligomerization of amyloid‐β peptide are competing processes as a result of distinct patterns of motif interplay. J Biol Chem 287: 748 – 756.en_US
dc.identifier.citedreferenceKumar‐singh S, Theuns ÃJ, Broeck B Van, Pirici D, Vennekens K, Corsmit E, Cruts M, Dermaut B, Wang R, Broeckhoven C Van ( 2006 ) Mean age‐of‐onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Aβ42 and decreased Aβ40. Hum Mutat 27: 686 – 695.en_US
dc.identifier.citedreferenceWalker ES, Martinez M, Brunkan AL, Goate A ( 2005 ) Presenilin 2 familial Alzheimer's disease mutations result in partial loss of function and dramatic changes in Aβ 42/40 ratios. J Neurochem 92: 294 – 301.en_US
dc.identifier.citedreferenceDuff K, Eckman C, Zehr C, Yu X, Prada C ( 1996 ) Increased amyloid‐β42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710 – 713.en_US
dc.identifier.citedreferenceCitron M, Westaway D, Xia W, Carlson G ( 1997 ) Mutant presenilins of Alzheimer's disease increase production of 42‐residue amyloid β‐protein in both transfected cells and transgenic mice. Nat Med 3: 67 – 72.en_US
dc.identifier.citedreferenceBorchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada C, Kim G, Seekins S, Yager D, et al. ( 1996 ) Familial Alzheimer's disease – linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17: 1005 – 1013.en_US
dc.identifier.citedreferenceCalamai M, Pavone FS ( 2013 ) Partitioning and confinement of GM1 ganglioside induced by amyloid aggregates. FEBS Lett 587: 1385 – 1391.en_US
dc.identifier.citedreferenceRenner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, Triller A ( 2010 ) Deleterious effects of amyloid β oligomers acting as an extracellular scaffold for mGluR5. Neuron 66: 739 – 754.en_US
dc.identifier.citedreferenceOmtri R, Davidson M ( 2012 ) Differences in the cellular uptake and intracellular itineraries of amyloid beta proteins 40 and 42: Ramifications for the Alzheimer's drug discovery. Mol Pharm 9: 1887 – 1897.en_US
dc.identifier.citedreferenceWang H, Lee DHS, Andrea MRD, Peterson PA, Shank RP, Reitz AB ( 2000 ) β‐amyloid 1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J Biol Chem 275: 5626 – 5632.en_US
dc.identifier.citedreferenceLaurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM ( 2009 ) Cellular prion protein mediates impairment of synaptic plasticity by amyloid‐β oligomers. Nature 457: 1128 – 1132.en_US
dc.identifier.citedreferenceCisse M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al. ( 2011 ) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469: 47 – 52.en_US
dc.identifier.citedreferenceCrouch PJ, Harding S‐ME, White AR, Camakaris J, Bush AI, Masters CL ( 2008 ) Mechanisms of Aβ mediated neurodegeneration in Alzheimer's disease. Int J Biochem Cell Biol 40: 181 – 198.en_US
dc.identifier.citedreferenceMcLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL ( 1999 ) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 155: 853 – 866.en_US
dc.identifier.citedreferenceLue L, Kuo Y, Roher A, Brachova L ( 1999 ) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 155: 853 – 862.en_US
dc.identifier.citedreferenceLazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB ( 2005 ) On the nucleation of amyloid β‐protein monomer folding. Protein Sci 14: 1581 – 1596.en_US
dc.identifier.citedreferenceVivekanandan S, Brender JR, Lee SY, Ramamoorthy A ( 2011 ) A partially folded structure of amyloid‐beta(1–40) in an aqueous environment. Biochem Biophys Res Commun 411: 312 – 316.en_US
dc.identifier.citedreferenceBitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB ( 2003 ) Amyloid β‐protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100: 330 – 335.en_US
dc.identifier.citedreferenceBitan G, Lomakin A, Teplow DB ( 2001 ) Amyloid β‐protein oligomerization: prenucleation interactions revealed by photo‐induced cross‐linking of unmodified proteins. J Biol Chem 276: 35176 – 35184.en_US
dc.identifier.citedreferenceDing H, Wong PT, Lee EL, Gafni A, Steel DG ( 2009 ) Determination of the oligomer size of amyloidogenic protein β‐amyloid(1–40) by single‐molecule spectroscopy. Biophys J 97: 912 – 921.en_US
dc.identifier.citedreferenceCipriani G, Dolciotti C, Picchi L, Bonuccelli U ( 2011 ) Alzheimer and his disease: a brief history. Neurol Sci 32: 275 – 279.en_US
dc.identifier.citedreferenceKlein WL, Krafft GA, Finch CE ( 2001 ) Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 24: 219 – 224.en_US
dc.identifier.citedreferenceWalsh DM, Selkoe DJ ( 2007 ) Aβ oligomers–a decade of discovery. J Neurochem 101: 1172 – 1184.en_US
dc.identifier.citedreferenceBenilova I, Karran E, De Strooper B ( 2012 ) The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 15: 349 – 357.en_US
dc.identifier.citedreferenceDavis DG, Schmitt FA, Wekstein DR ( 1999 ) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58: 376 – 388.en_US
dc.identifier.citedreferenceTerry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen L A, Katzman R ( 1991 ) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572 – 580.en_US
dc.identifier.citedreferenceDe Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, De Deyn PP, Coart E, Hansson O, Minthon L, Zetterberg H, Blennow K, Shaw L, Trojanowski JQ ( 2010 ) Diagnosis‐independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67: 949 – 956.en_US
dc.identifier.citedreferenceOno K, Condron MM, Teplow DB ( 2009 ) Structure‐neurotoxicity relationships of amyloid β‐protein oligomers. Proc Natl Acad Sci USA 106: 14745 – 14750.en_US
dc.identifier.citedreferenceDemuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG ( 2005 ) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280: 17294 – 17300.en_US
dc.identifier.citedreferenceChafekar SM, Baas F, Scheper W ( 2008 ) Oligomer‐specific Aβ toxicity in cell models is mediated by selective uptake. Biochim Biophys Acta 1782: 523 – 531.en_US
dc.identifier.citedreferenceLord SJ, Lee HD, Moerner WE ( 2010 ) Single‐molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem 82: 2192 – 2203.en_US
dc.identifier.citedreferenceWalter NG, Huang C, Manzo AJ, Sobhy MA ( 2008 ) Do‐it‐yourself guide: how to use the modern single‐molecule toolkit. Nat Methods 5: 475 – 489.en_US
dc.identifier.citedreferenceWong PT, Schauerte JA, Wisser KC, Ding H, Lee EL, Steel DG, Gafni A ( 2009 ) Amyloid‐β membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity. J Mol Biol 386: 81 – 96.en_US
dc.identifier.citedreferenceCalderon RO, Attema B, DeVries GH ( 1995 ) Lipid composition of neuronal cell bodies and neurites from cultured dorsal root ganglia. J Neurochem 64: 424 – 429.en_US
dc.identifier.citedreferenceOkabe S ( 2007 ) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34: 503 – 518.en_US
dc.identifier.citedreferenceVon Bohlen Und Halbach O ( 2009 ) Structure and function of dendritic spines within the hippocampus. Ann Anat 191: 518 – 531.en_US
dc.identifier.citedreferenceDukes KD, Rodenberg CF, Lammi RK ( 2008 ) Monitoring the earliest amyloid‐β oligomers via quantized photobleaching of dye‐labeled peptides. Anal Biochem 382: 29 – 34.en_US
dc.identifier.citedreferenceSchauerte JA, Wong PT, Wisser KC, Ding H, Steel DG, Gafni A ( 2010 ) Simultaneous single‐molecule fluorescence and conductivity studies reveal distinct classes of Aβ species on lipid bilayers. Biochemistry 49: 3031 – 3039.en_US
dc.identifier.citedreferenceJohnson RD, Schauerte J A, Wisser KC, Gafni A, Steel DG ( 2011 ) Direct observation of single amyloid‐β(1–40) oligomers on live cells: binding and growth at physiological concentrations. PLoS One 6: e23970.en_US
dc.identifier.citedreferenceChang C‐C, Althaus JC, Carruthers CJL, Sutton M A, Steel DG, Gafni A ( 2013 ) Synergistic interactions between Alzheimer's Aβ40 and Aβ42 on the surface of primary neurons revealed by single molecule microscopy. PLoS One 8: e82139.en_US
dc.identifier.citedreferenceOrte A, Birkett NR, Clarke RW, Devlin GL, Dobson CM, Klenerman D ( 2008 ) Direct characterization of amyloidogenic oligomers by single‐molecule fluorescence. Proc Natl Acad Sci USA 105: 14424 – 14429.en_US
dc.identifier.citedreferenceNarayan P, Orte A, Clarke RW, Bolognesi B, Hook S, Ganzinger K A, Meehan S, Wilson MR, Dobson CM, Klenerman D ( 2012 ) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid‐β(1–40) peptide. Nat Struct Mol Biol 19: 79 – 83.en_US
dc.identifier.citedreferenceNarayan P, Ganzinger KA, McColl J, Weimann L, Meehan S, Qamar S, Carver JA, Wilson MR, St George‐Hyslop P, Dobson CM, et al. ( 2013 ) Single molecule characterization of the interactions between amyloid‐β peptides and the membranes of hippocampal cells. J Am Chem Soc 135: 1491 – 1498.en_US
dc.identifier.citedreferenceCalamai M, Pavone FS ( 2011 ) Single molecule tracking analysis reveals that the surface mobility of amyloid oligomers is driven by their conformational structure. J Am Chem Soc 133: 12001 – 12008.en_US
dc.identifier.citedreferenceLi S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D ( 2009 ) Soluble oligomers of amyloid β protein facilitate hippocampal long‐term depression by disrupting neuronal glutamate uptake. Neuron 62: 788 – 801.en_US
dc.identifier.citedreferenceShankar GM, Li S, Mehta TH, Garcia‐Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al. ( 2008 ) Amyloid‐β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14: 837 – 842.en_US
dc.identifier.citedreferenceKlein WL ( 2002 ) Aβ toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41: 345 – 352.en_US
dc.identifier.citedreferenceLacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, et al. ( 2004 ) Synaptic targeting by Alzheimer's‐related amyloid β oligomers. J Neurosci 24: 10191 – 10200.en_US
dc.identifier.citedreferenceLacor P, Buniel M, Furlow P ( 2007 ) Aβ oligomer‐induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27: 796 – 807.en_US
dc.identifier.citedreferenceZempel H, Thies E, Mandelkow E, Mandelkow E‐M ( 2010 ) Aβ oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30: 11938 – 11950.en_US
dc.identifier.citedreferenceCapone R, Quiroz FG, Prangkio P, Saluja I, Sauer AM, Bautista MR, Turner RS, Yang J, Mayer M ( 2009 ) Amyloid‐β‐induced ion flux in artificial lipid bilayers and neuronal cells: resolving a controversy. Neurotox Res 16: 1 – 13.en_US
dc.identifier.citedreferenceLesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH ( 2006 ) A specific amyloid‐beta protein assembly in the brain impairs memory. Nature 440: 352 – 357.en_US
dc.identifier.citedreferenceMcDonald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, Selkoe DJ, Ince PG, Walsh DM ( 2010 ) The presence of sodium dodecyl sulphate‐stable Aβ dimers is strongly associated with Alzheimer‐type dementia. Brain 133: 1328 – 1341.en_US
dc.identifier.citedreferenceArispe N, Rojas E, Pollard HB ( 1993 ) Giant multilevel cation channels formed by Alzheimer disease. Proc Natl Acad Sci USA 90: 10573 – 10577.en_US
dc.identifier.citedreferenceKawahara M, Arispe N, Kuroda Y, Rojas E ( 1997 ) Alzheimer's disease amyloid β‐protein forms Zn(2+)‐sensitive, cation‐selective channels across excised membrane patches from hypothalamic neurons. Biophys J 73: 67 – 75.en_US
dc.identifier.citedreferenceLashuel HA, Hartley D, Petre BM, Walz T, Jr PTL, Turner J, King JC, Lachlan‐cope TA, Jones PD ( 2002 ) Amyloid pores from pathogenic mutations. Nature 418: 291.en_US
dc.identifier.citedreferenceLashuel HA, Lansbury PT ( 2006 ) Are amyloid diseases caused by protein aggregates that mimic bacterial pore‐forming toxins? Q Rev Biophys 39: 167 – 201.en_US
dc.identifier.citedreferenceQuist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R ( 2005 ) Amyloid ion channels: a common structural link for protein‐misfolding disease. Proc Natl Acad Sci USA 102: 10427 – 10432.en_US
dc.identifier.citedreferencePowell LR, Dukes KD, Lammi RK ( 2012 ) Probing the efficacy of peptide‐based inhibitors against acid‐ and zinc‐promoted oligomerization of amyloid‐β peptide via single‐oligomer spectroscopy. Biophys Chem 160: 12 – 19.en_US
dc.identifier.citedreferencePallitto MM, Ghanta J, Heinzelman P, Kiessling LL, Murphy RM ( 1999 ) Recognition sequence design for peptidyl modulators of β‐amyloid aggregation and toxicity. Biochemistry 38: 3570 – 3578.en_US
dc.identifier.citedreferenceSoto C, Sigurdsson E, Morelli L, Kumar R, Castano E, Frangione B ( 1998 ) β‐sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's disease. Nat Med 4: 822 – 826.en_US
dc.identifier.citedreferenceGordon DJ, Sciarretta KL, Meredith SC ( 2001 ) Inhibition of beta‐amyloid(40) fibrillogenesis and disassembly of beta‐amyloid (40) fibrils by short beta‐amyloid congeners containing N‐methyl amino acids at alternate residues. Biochemistry 40: 8237 – 8245.en_US
dc.identifier.citedreferenceEtienne M A, Aucoin JP, Fu Y, McCarley RL, Hammer RP ( 2006 ) Stoichiometric inhibition of amyloid beta‐protein aggregation with peptides containing alternating alpha,alpha‐disubstituted amino acids. J Am Chem Soc 128: 3522 – 3523.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.