Show simple item record

Influence of Catalyst Structure and Reaction Conditions on anti ‐ versus syn ‐Aminopalladation Pathways in Pd‐Catalyzed Alkene Carboamination Reactions of N ‐Allylsulfamides

dc.contributor.authorFornwald, Ryan M.en_US
dc.contributor.authorFritz, Jonathan A.en_US
dc.contributor.authorWolfe, John P.en_US
dc.date.accessioned2014-07-03T14:41:21Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:21Z
dc.date.issued2014-07-07en_US
dc.identifier.citationFornwald, Ryan M.; Fritz, Jonathan A.; Wolfe, John P. (2014). "Influence of Catalyst Structure and Reaction Conditions on anti ‐ versus syn ‐Aminopalladation Pathways in Pd‐Catalyzed Alkene Carboamination Reactions of N ‐Allylsulfamides." Chemistry – A European Journal 20(28): 8782-8790.en_US
dc.identifier.issn0947-6539en_US
dc.identifier.issn1521-3765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107505
dc.description.abstractThe Pd‐catalyzed coupling of N ‐allylsulfamides with aryl and alkenyl triflates to afford cyclic sulfamide products is described. In contrast to other known Pd‐catalyzed alkene carboamination reactions, these transformations may be selectively induced to occur by way of either anti ‐ or syn ‐aminopalladation mechanistic pathways by modifying the catalyst structure and reaction conditions. A constructive approach : A concise, efficient approach has led to the synthesis of cyclic sulfamides by using Pd‐catalyzed alkene carboamination reactions of N ‐allylsulfamides (see picture; OTf=triflate, RuPhos=2‐dicyclohexylphosphino‐2′,6′‐diisopropoxybiphenyl, X‐phos=2‐dicyclohexylphosphino‐2′,4′,6′‐triisopropylbiphenyl). The mechanism of these transformations is highly dependent on the catalyst structure and reaction conditions. The reactions can be induced to proceed selectively through either syn ‐ or anti ‐aminopalladation pathways under appropriate conditions.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherHeterocyclesen_US
dc.subject.otherPalladiumen_US
dc.subject.otherAddition Reactionsen_US
dc.subject.otherAlkenesen_US
dc.subject.otherStereoselectivityen_US
dc.titleInfluence of Catalyst Structure and Reaction Conditions on anti ‐ versus syn ‐Aminopalladation Pathways in Pd‐Catalyzed Alkene Carboamination Reactions of N ‐Allylsulfamidesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109‐1055 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, Aquinas College, 202 Albertus Hall, 1607 Robinson Road SE, Grand Rapids MI 49506‐1799 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107505/1/chem_201402258_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107505/2/8782_ftp.pdf
dc.identifier.doi10.1002/chem.201402258en_US
dc.identifier.sourceChemistry – A European Journalen_US
dc.identifier.citedreferenceB. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 79 – 81.en_US
dc.identifier.citedreferenceD. L. Dodds, M. D. K. Boele, G. P. F. van Strijdonck, J. G. de Vries, P. W. N. M. van Leeuwen, P. C. J. Kamer, Eur. J. Inorg. Chem. 2012, 1660 – 1671.en_US
dc.identifier.citedreferenceIn nonpolar solvents, [L n Pd(Ar)(OTf)] (OTf=triflate) complexes exist as tight ion pairs, and these complexes are fully dissociated into solvent‐separated ions in polar solvents, see: A. Jutand, A. Mosleh, Organometallics 1995, 14, 1810 – 1817.en_US
dc.identifier.citedreferenceFor studies on the mechanism of syn ‐migratory insertion of alkenes into PdN bonds, see:en_US
dc.identifier.citedreferenceJ. D. Neukom, N. S. Perch, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 6276 – 6277;en_US
dc.identifier.citedreferenceP. S. Hanley, D. Marković, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 6302 – 6303;en_US
dc.identifier.citedreferenceJ. D. Neukom, N. S. Perch, J. P. Wolfe, Organometallics 2011, 30, 1269 – 1277;en_US
dc.identifier.citedreferenceP. S. Hanley, J. F. Hartwig, J. Am. Chem. Soc. 2011, 133, 15661 – 15673;en_US
dc.identifier.citedreferenceReference [15].en_US
dc.identifier.citedreferenceIt has previously been illustrated that Pd‐catalyzed arene CH functionalization/alkene carboamination reactions of N ‐pentenyl amides proceed through anti ‐aminopalladation pathways; these transformations involve a Pd II /Pd IV catalytic cycle as opposed to the Pd 0 /Pd II cycle for the sulfamides described herein, see: P. A. Sibbald, C. F. Rosewall, R. D. Swartz, F. E. Michael, J. Am. Chem. Soc. 2009, 131, 15945 – 15951.en_US
dc.identifier.citedreferenceM. F. Semmelhack, C. Bodurow, J. Am. Chem. Soc. 1984, 106, 1496 – 1498.en_US
dc.identifier.citedreferencePhCF 3 is more polar than toluene and dioxane as measured by dielectric‐constant values (toluene: 2.38; dioxane: 2.21; PhCF 3: 9.4) or E N  values (toluene: 0.099, dioxane: 0.164, PhCF 3: 0.241), see:en_US
dc.identifier.citedreferenceC; Reichardt, Chem. Rev. 1994, 94, 2319 – 2358;en_US
dc.identifier.citedreferenceA. Ogawa, K. Tsuchii, “α,α,α‐Trifluorotoluene” in The Electronic Encyclopedia of Reagents for Organic Synthesis. http://mrw.interscience.wiley.com/eros/.en_US
dc.identifier.citedreferenceAlthough there is an intramolecular component to the reactions described herein, the aryl/alkenyl halide and urea substrate are separate components coupled in an intermolecular process.en_US
dc.identifier.citedreferenceWe have previously demonstrated that ligand effects can influence alkene syn ‐ vs. anti ‐heteropalladation pathways in intramolecular Pd‐catalyzed carboalkoxylation and carboamination reactions, see: J. S. Nakhla, J. W. Kampf, J. P. Wolfe, J. Am. Chem. Soc. 2006, 128, 2893 – 2901.en_US
dc.identifier.citedreferenceLigands, bases, and oxidants influence syn ‐ versus anti ‐aminopalladation pathways in Wacker‐type oxidative cyclizations of aminoalkenes, see:en_US
dc.identifier.citedreferenceG. Liu, S. S. Stahl, J. Am. Chem. Soc. 2007, 129, 6328 – 6335;en_US
dc.identifier.citedreferenceA. B. Weinstein, S. S. Stahl, Angew. Chem. 2012, 124, 11673 – 11677; Angew. Chem. Int. Ed. 2012, 51, 11505 – 11509;en_US
dc.identifier.citedreferenceX. Ye, P. B. White, S. S. Stahl, J. Org. Chem. 2013, 78, 2083 – 2090;en_US
dc.identifier.citedreferenceC; Martínez, Y. Wu, A. B. Weinstein, S. S. Stahl, G. Liu, K. Muniz, J. Org. Chem. 2013, 78, 6309 – 6315.en_US
dc.identifier.citedreferenceA. B. Reitz, G. R. Smith, M. H. Parker, Expert Opin. Ther. Pat. 2009, 19, 1449 – 1453.en_US
dc.identifier.citedreferenceA. Spaltenstein, M. R. Almond, W. J. Bock, D. G. Cleary, E. S. Furfine, R. J. Hazen, W. M. Kazmierski, F. G. Salituro, R. D. Tung, L. L. Wright, Bioorg. Med. Chem. Lett. 2000, 10, 1159 – 1162.en_US
dc.identifier.citedreferenceJ. Zhong, X. Gan, K. R. Alliston, W. C. Groutas, Bioorg. Med. Chem. 2004, 12, 589 – 593.en_US
dc.identifier.citedreferenceS. H. Rosenberg, J. F. Dellaria, D. J. Kempf, C. W. Hutchins, K. W. Woods, R. G. Maki, E. de Lara, K. P. Spina, H. H. Stein, J. Cohen, W. R. Baker, J. J. Plattner, H. D. Kleinert, T. J. Perun, J. Med. Chem. 1990, 33, 1582 – 1590.en_US
dc.identifier.citedreferenceD. Dou, S. R. Mandadapu, K. R. Alliston, Y. Kim, K. O. Chang, W. C. Groutas, Eur. J. Med. Chem. 2012, 47, 59 – 64.en_US
dc.identifier.citedreferenceS. V. Pansare, A. N. Rai, S. N. Kate, Synlett 1998, 623 – 624.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceR. I. McDonald, S. S. Stahl, Angew. Chem. 2010, 122, 5661 – 5664; Angew. Chem. Int. Ed. 2010, 49, 5529 – 5532;en_US
dc.identifier.citedreferenceK. Muñiz, J. Streuff, C. H. Hövelmann, A. Núñez, Angew. Chem. 2007, 119, 7255 – 7258; Angew. Chem. Int. Ed. 2007, 46, 7125 – 7127;en_US
dc.identifier.citedreferenceK. Muñiz, C. H. Hövelmann, E. Campos‐Gómez, J. Barluenga, J. M. González, J. Streuff, M. Nieger, Chem. Asian J. 2008, 3, 776 – 788;en_US
dc.identifier.citedreferenceH. Hamaguchi, S. Kosaka, H. Ohno, N. Fujii, T. Tanaka, Chem. Eur. J. 2007, 13, 1692 – 1708;en_US
dc.identifier.citedreferenceB. Zhao, W. Yuan, H. Du, Y. Shi, Org. Lett. 2007, 9, 4943 – 4945;en_US
dc.identifier.citedreferenceB. Wang, H. Du, Y. Shi, Angew. Chem. 2008, 120, 8348 – 8351; Angew. Chem. Int. Ed. 2008, 47, 8224 – 8227;en_US
dc.identifier.citedreferenceR. G. Cornwall, B. Zhao, Y. Shi, Org. Lett. 2013, 15, 796 – 799;en_US
dc.identifier.citedreferenceT. P. Zabawa, D. Kasi, S. R. Chemler, J. Am. Chem. Soc. 2005, 127, 11250 – 11251.en_US
dc.identifier.citedreferenceF. Fécourt, G. López, A. Van Der Lee, J. Martinez, G. Dewynter, Tetrahedron: Asymmetry 2010, 21, 2361 – 2366.en_US
dc.identifier.citedreferenceFor representative examples, see:en_US
dc.identifier.citedreferenceD. Dou, K. C. Tiew, G. He, S. R. Mandadapu, S. Aravapalli, K. R. Alliston, Y. Kim, K. O. Chang, W. C. Groutas, Bioorg. Med. Chem. 2011, 19, 5975 – 5983;en_US
dc.identifier.citedreferenceS. J. Kim, M. H. Jung, K. H. Yoo, J. H. Cho, C.‐H. Oh, Bioorg. Med. Chem. Lett. 2008, 18, 5815 – 5818.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. A. Fritz, J. S. Nakhla, J. P. Wolfe, Org. Lett. 2006, 8, 2531 – 2534;en_US
dc.identifier.citedreferenceJ. A. Fritz, J. P. Wolfe, Tetrahedron 2008, 64, 6838 – 6852.en_US
dc.identifier.citedreferenceFor recent reviews, see:en_US
dc.identifier.citedreferenceJ. P. Wolfe, Top. Heterocycl. Chem. 2013, 32, 1 – 38;en_US
dc.identifier.citedreferenceD. M. Schultz, J. P. Wolfe, Synthesis 2012, 44, 351 – 361.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27 – 50;en_US
dc.identifier.citedreferenceD. S. Surry, S. L. Buchwald, Angew. Chem. 2008, 120, 6438 – 6461; Angew. Chem. Int. Ed. 2008, 47, 6338 – 6361.en_US
dc.identifier.citedreferenceOur prior studies have illustrated that Pd‐catalyzed carboamination reactions between aryl bromides and alkenes bearing pendant nucleophiles, such as anilines, carbamates, ureas, and hydroxylamines proceed through syn ‐addition pathways, see:en_US
dc.identifier.citedreferenceJ. E. Ney, J. P. Wolfe, Angew. Chem. 2004, 116, 3689 – 3692; Angew. Chem. Int. Ed. 2004, 43, 3605 – 3608;en_US
dc.identifier.citedreferenceM. B. Bertrand, J. D. Neukom, J. P. Wolfe, J. Org. Chem. 2008, 73, 8851 – 8860;en_US
dc.identifier.citedreferenceG. S. Lemen, N. C. Giampietro, M. B. Hay, J. P. Wolfe, J. Org. Chem. 2009, 74, 2533 – 2540;en_US
dc.identifier.citedreferenceB. A. Hopkins, J. P. Wolfe, Angew. Chem. 2012, 124, 10024 – 10028; Angew. Chem. Int. Ed. 2012, 51, 9886 – 9890.en_US
dc.identifier.citedreferencePd‐catalyzed N ‐arylation reactions of sulfamides are believed to proceed through intermediates similar to 5, see: L. Alcaraz, C. Bennion, J. Morris, P. Meghani, S. M. Thom, Org. Lett. 2004, 6, 2705 – 2708.en_US
dc.identifier.citedreferenceIt has been illustrated that aminopalladation reactions of relatively electron‐poor nucleophiles are reversible, see: P. B. White, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 18594 – 18597.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceW. Rauf, J. M. Brown, Chem. Commun. 2013, 49, 8430 – 8440;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.