Show simple item record

Spatially Selective Heteronuclear Multiple‐Quantum Coherence Spectroscopy for Biomolecular NMR Studies

dc.contributor.authorSathyamoorthy, Bharathwajen_US
dc.contributor.authorParish, David M.en_US
dc.contributor.authorMontelione, Gaetano T.en_US
dc.contributor.authorXiao, Rongen_US
dc.contributor.authorSzyperski, Thomasen_US
dc.date.accessioned2014-07-03T14:41:22Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-07-03T14:41:22Z
dc.date.issued2014-06-23en_US
dc.identifier.citationSathyamoorthy, Bharathwaj; Parish, David M.; Montelione, Gaetano T.; Xiao, Rong; Szyperski, Thomas (2014). "Spatially Selective Heteronuclear Multiple‐Quantum Coherence Spectroscopy for Biomolecular NMR Studies." ChemPhysChem 15(9): 1872-1879.en_US
dc.identifier.issn1439-4235en_US
dc.identifier.issn1439-7641en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107508
dc.description.abstractSpatially selective heteronuclear multiple‐quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to “time‐staggered” acquisitioning of free induction decays (FIDs) in different slices, SS HMQC allows one to use long delays for longitudinal nuclear spin relaxation at high repetition rates. To also achieve high intrinsic sensitivity, SS HMQC is implemented by combining a single spatially selective 1 H excitation pulse with nonselective 1 H 180° pulses. High‐quality spectra were obtained within 66 s for a 7.6 kDa uniformly 13 C, 15 N‐labeled protein, and within 45 and 90 s for, respectively, two proteins with molecular weights of 7.5 and 43 kDa, which were uniformly 2 H, 13 C, 15 N‐labeled, except for having protonated methyl groups of isoleucine, leucine and valine residues. Expect longer delays: Spatially selective (SS) HMQC NMR spectroscopy is presented for solution studies of proteins. Using SS HMQC allows one to employ long delays for longitudinal nuclear spin relaxation at high repetition rates for acquisition of free induction decays. This technique is applied to uniformly 13 C, 15 N‐labeled and uniformly 2 H, 13 C, 15 N‐labeled (but methyl group protonated) proteins with molecular weights of 7.5 and 43 kDa.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherRapid Data Acquisitionen_US
dc.subject.otherTime‐Staggered Data Acquisitionen_US
dc.subject.otherHMQCen_US
dc.subject.otherFlip‐Back Pulsesen_US
dc.subject.otherSpatially Selective NMRen_US
dc.titleSpatially Selective Heteronuclear Multiple‐Quantum Coherence Spectroscopy for Biomolecular NMR Studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumPresent address: Department of Biophysics and Chemistry, University of Michigan, Ann Arbor, MI 48108 (USA)en_US
dc.contributor.affiliationotherDepartment of Molecular Biology and Biochemistry and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, The State University of New York at Buffalo, Buffalo NY 14260 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107508/1/cphc_201301232_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107508/2/1872_ftp.pdf
dc.identifier.doi10.1002/cphc.201301232en_US
dc.identifier.sourceChemPhysChemen_US
dc.identifier.citedreference en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. Mueller, J. Am. Chem. Soc. 1979, 101, 4481 – 4484;en_US
dc.identifier.citedreferenceA. Bax, R. H. Griffey, B. L. Hawkins, J. Magn. Reson. 1983, 55, 301 – 315.en_US
dc.identifier.citedreferenceB. Farmer II, L. Mueller, J. Biomol. NMR 1994, 4, 673 – 687;en_US
dc.identifier.citedreferenceS. M. Pascal, D. R. Muhandiram, T. Yamazaki, J. D. Formankay, L. E. Kay, J. Magn. Reson. Ser. B 1994, 103, 197 – 201;en_US
dc.identifier.citedreferenceD. Uhrín, J. Bramham, S. Winder, P. Barlow, J. Biomol. NMR 2000, 18, 253 – 259;en_US
dc.identifier.citedreferenceY. Xia, A. Yee, C. Arrowsmith, X. Gao, J. Biomol. NMR 2003, 27, 193 – 203;en_US
dc.identifier.citedreferenceY. Shen, H. S. Atreya, G. Liu, T. Szyperski, J. Am. Chem. Soc. 2005, 127, 9085 – 9099;en_US
dc.identifier.citedreferenceT. Parella, P. Nolis, Concept Magnetic Res. 2010, 36A, 1 – 23.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Santoro, G. C. King, J. Magn. Reson. 1992, 97, 202 – 207;en_US
dc.identifier.citedreferenceG. W. Vuister, A. Bax, J. Magn. Reson. 1992, 98, 428 – 435.en_US
dc.identifier.citedreferenceA. Ruschak, L. Kay, J. Biomol. NMR 2010, 46, 75 – 87.en_US
dc.identifier.citedreferenceJ. E. Ollerenshaw, V. Tugarinov, L. E. Kay, Magn. Reson. Chem. 2003, 41, 843 – 852.en_US
dc.identifier.citedreferenceO. F. Lange, P. Rossi, N. G. Sgourakis, Y. Song, H.‐W. Lee, J. M. Aramini, A. Ertekin, R. Xiao, T. B. Acton, G. T. Montelione, D. Baker, Proc. Natl. Acad. Sci. USA 2012, 109, 10873 – 10878.en_US
dc.identifier.citedreferenceF. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, A. Bax, J. Biomol. NMR 1995, 6, 277 – 293.en_US
dc.identifier.citedreferenceA. J. Shaka, P. B. Barker, R. Freeman, J. Magn. Reson. 1985, 64, 547 – 552.en_US
dc.identifier.citedreferenceD. Marion, M. Ikura, R. Tschudin, A. Bax, J. Magn. Reson. 1989, 85, 393 – 399.en_US
dc.identifier.citedreferenceM. Bernstein, K. King, X. Zhou, Handbook of MRI Pulse Sequences: A Guide for Scientists, Engineers, Radiologists, Technologists, Elsevier Academic Press, Burlington, 2004, pp. 38 – 41.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. J. Skalicky, J. L. Mills, S. Sharma, T. Szyperski, J. Am. Chem. Soc. 2001, 123, 388 – 397;en_US
dc.identifier.citedreferenceB. Sathyamoorthy, K. K. Singarapu, A. E. Garcia, T. Szyperski, ChemBioChem 2013, 14, 684 – 688.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceY. Wu, A. Ghosh, T. Szyperski, Angew. Chem. 2009, 121, 1507 – 1511; Angew. Chem. Int. Ed. 2009, 48, 1479 – 1483;en_US
dc.identifier.citedreferenceY. Wu, A. Ghosh, T. Szyperski, J. Struct. Funct. Genomics 2009, 10, 227 – 232;en_US
dc.identifier.citedreferenceA. Ghosh, Y. Wu, Y. He, T. Szyperski, J. Magn. Reson. 2011, 213, 46 – 57.en_US
dc.identifier.citedreferenceK. A. Manning, B. Sathyamoorthy, A. Eletsky, T. Szyperski, A. S. Murkin, J. Am. Chem. Soc. 2012, 134, 20589 – 20592.en_US
dc.identifier.citedreferenceH. Kovacs, D. Moskau, M. Spraul, Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46, 131 – 155.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. S. Atreya, T. Szyperski, Methods Enzymol. 2005, 394, 78 – 108;en_US
dc.identifier.citedreferenceI. C. Felli, B. Brutscher, ChemPhysChem 2009, 10, 1356 – 1368;en_US
dc.identifier.citedreferenceT. Szyperski, G. T. Montelione in Biomolecular NMR Spectroscopy, Vol. 3 (Eds.: A. J. Dingley, S. M. Pascal ), IOS Press, Amsterdam, 2011, pp. 366 – 380;en_US
dc.identifier.citedreferenceE. Rennella, B. Brutscher, ChemPhysChem 2013, 14, 3059 – 3070.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceG. T. Montelione, C. Arrowsmith, M. Girvin, M. Kennedy, J. Markley, R. Powers, J. Prestegard, T. Szyperski, J. Struct. Funct. Genomics 2009, 10, 101 – 106;en_US
dc.identifier.citedreferenceG. T. Montelione, T. Szyperski, Curr. Opin. Drug Discovery Dev. 2010, 13, 335 – 349.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. Frydman, T. Scherf, A. Lupulescu, Proc. Natl. Acad. Sci. USA 2002, 99, 15858 – 15862;en_US
dc.identifier.citedreferenceL. Frydman, A. Lupulescu, T. Scherf, J. Am. Chem. Soc. 2003, 125, 9204 – 9217;en_US
dc.identifier.citedreferenceP. Schanda, E. Kupce, B. Brutscher, J. Biomol. NMR 2005, 33, 199 – 211;en_US
dc.identifier.citedreferenceP. Schanda, B. Brutscher, J. Am. Chem. Soc. 2005, 127, 8014 – 8015;en_US
dc.identifier.citedreferenceP. Schanda, B. Brutscher, J. Magn. Reson. 2006, 178, 334 – 339;en_US
dc.identifier.citedreferenceP. Schanda, H. Van Melckebeke, B. Brutscher, J. Am. Chem. Soc. 2006, 128, 9042 – 9043;en_US
dc.identifier.citedreferenceP. Schanda, V. Forge, B. Brutscher, Magn. Reson. Chem. 2006, 44, S 177 –S 184;en_US
dc.identifier.citedreferenceP. Schanda, V. Forge, B. Brutscher, Proc. Natl. Acad. Sci. USA 2007, 104, 11257 – 11262;en_US
dc.identifier.citedreferenceM. Gal, P. Schanda, B. Brutscher, L. Frydman, J. Am. Chem. Soc. 2007, 129, 1372 – 1377;en_US
dc.identifier.citedreferenceT. Kern, P. Schanda, B. Brutscher, J. Magn. Reson. 2008, 190, 333 – 338;en_US
dc.identifier.citedreferenceC. Amero, P. Schanda, M. A. Dura, I. Ayala, D. Marion, B. Franzetti, B. Brutscher, J. Boisbouvier, J. Am. Chem. Soc. 2009, 131, 3448 – 3449;en_US
dc.identifier.citedreferenceM. Gal, T. Kern, P. Schanda, L. Frydman, B. Brutscher, J. Biomol. NMR 2009, 43, 1 – 10;en_US
dc.identifier.citedreferenceA. Corazza, E. Rennella, P. Schanda, M. C. Mimmi, T. Cutuil, S. Raimondi, S. Giorgetti, F. Fogolari, P. Viglino, L. Frydman, M. Gal, V. Bellotti, B. Brutscher, G. Esposito, J. Biol. Chem. 2010, 285, 5827 – 5835;en_US
dc.identifier.citedreferenceY. Shrot, L. Frydman, J. Magn. Reson. 2011, 209, 352 – 358;en_US
dc.identifier.citedreferenceE. Rennella, T. Cutuil, P. Schanda, I. Ayala, V. Forge, B. Brutscher, J. Am. Chem. Soc. 2012, 134, 8066 – 8069;en_US
dc.identifier.citedreferenceP. E. S. Smith, K. J. Donovan, O. Szekely, M. Baias, L. Frydman, ChemPhysChem 2013, 14, 3138 – 3145.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. Szyperski, G. Wider, J. H. Bushweller, K. Wuethrich, J. Am. Chem. Soc. 1993, 115, 9307 – 9308;en_US
dc.identifier.citedreferenceT. Szyperski, D. C. Yeh, D. K. Sukumaran, H. N. B. Moseley, G. T. Montelione, Proc. Natl. Acad. Sci. USA 2002, 99, 8009 – 8014.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. Kim, T. Szyperski, J. Am. Chem. Soc. 2003, 125, 1385 – 1393;en_US
dc.identifier.citedreferenceH. S. Atreya, T. Szyperski, Proc. Natl. Acad. Sci. USA 2004, 101, 9642 – 9647;en_US
dc.identifier.citedreferenceH. S. Atreya, A. Eletsky, T. Szyperski, J. Am. Chem. Soc. 2005, 127, 4554 – 4555;en_US
dc.identifier.citedreferenceH. S. Atreya, E. Garcia, Y. Shen, T. Szyperski, J. Am. Chem. Soc. 2007, 129, 680 – 692;en_US
dc.identifier.citedreferenceH. S. Atreya, B. Sathyamoorthy, G. Jaipuria, V. Beaumont, G. Varani, T. Szyperski, J. Biomol. NMR 2012, 54, 337 – 342.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceE. Kupce, R. Freeman, J. Am. Chem. Soc. 2004, 126, 6429 – 6440;en_US
dc.identifier.citedreferenceS. Hiller, F. Fiorito, K. Wüthrich, G. Wider, Proc. Natl. Acad. Sci. USA 2005, 102, 10876 – 10881.en_US
dc.identifier.citedreferenceM. Mobli, M. W. Maciejewski, A. D. Schuyler, A. S. Stern, J. C. Hoch, Phys. Chem. Chem. Phys. 2012, 14, 10835 – 10843.en_US
dc.identifier.citedreferenceK. Pervushin, B. Vögeli, A. Eletsky, J. Am. Chem. Soc. 2002, 124, 12898 – 12902.en_US
dc.identifier.citedreferenceE. Kupče, R. Freeman, J. Magn. Reson. 2003, 163, 56 – 63.en_US
dc.identifier.citedreferenceD. M. Parish, T. Szyperski, J. Am. Chem. Soc. 2008, 130, 4925 – 4933.en_US
dc.identifier.citedreferenceJ. Cavanagh, W. J. Fairbrother, A. G. Palmer III, M. Rance, N. J. Skelton, Protein NMR Spectroscopy 2nd ed., Elsevier, Amsterdam, 2007.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. Vega‐Vazquez, J. C. Cobas, M. Martin‐Pastor, Magn. Reson. Chem. 2010, 48, 749 – 752;en_US
dc.identifier.citedreferenceN. Giraud, L. Beguin, J. Courtieu, D. Merlet, Angew. Chem. 2010, 122, 3559 – 3562; Angew. Chem. Int. Ed. 2010, 49, 3481 – 3484.en_US
dc.identifier.citedreferenceR. Bhattacharyya, A. Kumar, Chem. Phys. Lett. 2004, 383, 99 – 103.en_US
dc.identifier.citedreferenceM. J. Thrippleton, N. M. Loening, J. Keeler, Magn. Reson. Chem. 2003, 41, 441 – 447.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. Eletsky, H. S. Atreya, G. Liu, T. Szyperski, J. Am. Chem. Soc. 2005, 127, 14578 – 14579;en_US
dc.identifier.citedreferenceM. Deschamps, I. D. Campbell, J. Magn. Reson. 2006, 178, 206 – 211.en_US
dc.identifier.citedreferenceR. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, London, 1987.en_US
dc.identifier.citedreferenceK. Lu, X. Heng, L. Garyu, S. Monti, E. L. Garcia, S. Kharytonchyk, B. Dorjsuren, G. Kulandaivel, S. Jones, A. Hiremath, S. S. Divakaruni, C. LaCotti, S. Barton, D. Tummillo, A. Hosic, K. Edme, S. Albrecht, A. Telesnitsky, M. F. Summers, Science 2011, 334, 242 – 245.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.