Show simple item record

Focused screening of a panel of cancer‐related genetic polymorphisms reveals new susceptibility loci for pediatric acute lymphoblastic leukemia

dc.contributor.authorOffenmüller, Sonjaen_US
dc.contributor.authorRavindranath, Yadddanapudien_US
dc.contributor.authorGoyette, Gerarden_US
dc.contributor.authorKanakapalli, Deepaen_US
dc.contributor.authorMiller, Kathryn S.en_US
dc.contributor.authorBrecht, Ines B.en_US
dc.contributor.authorZolk, Oliveren_US
dc.date.accessioned2014-07-03T14:41:24Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-07-03T14:41:24Z
dc.date.issued2014-08en_US
dc.identifier.citationOffenmüller, Sonja ; Ravindranath, Yadddanapudi; Goyette, Gerard; Kanakapalli, Deepa; Miller, Kathryn S.; Brecht, Ines B.; Zolk, Oliver (2014). "Focused screening of a panel of cancerâ related genetic polymorphisms reveals new susceptibility loci for pediatric acute lymphoblastic leukemia." Pediatric Blood & Cancer 61(8): 1411-1415.en_US
dc.identifier.issn1545-5009en_US
dc.identifier.issn1545-5017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107514
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCandidate Gene Association Studyen_US
dc.subject.otherChildhood Acute Lymphoblastic Leukemiaen_US
dc.subject.otherERCC2en_US
dc.subject.otherMSR1en_US
dc.subject.otherPPP1R13Len_US
dc.titleFocused screening of a panel of cancer‐related genetic polymorphisms reveals new susceptibility loci for pediatric acute lymphoblastic leukemiaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107514/1/pbc25011-sm-0001-SuppData-S1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107514/2/pbc25011.pdf
dc.identifier.doi10.1002/pbc.25011en_US
dc.identifier.sourcePediatric Blood & Canceren_US
dc.identifier.citedreferenceHernandez‐Boluda JC, Pereira A, Cervantes F, et al. A polymorphism in the XPD gene predisposes to leukemic transformation and new nonmyeloid malignancies in essential thrombocythemia and polycythemia vera. Blood 2012; 119: 5221 – 5228.en_US
dc.identifier.citedreferenceChen J, Pande M, Huang YJ, et al. Cell cycle‐related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: A large‐scale study in non‐Hispanic white patients. Carcinogenesis 2013; 34: 299 – 306.en_US
dc.identifier.citedreferenceBarwick BG, Abramovitz M, Kodani M, et al. Prostate cancer genes associated with TMPRSS2‐ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br J Cancer 2010; 102: 570 – 576.en_US
dc.identifier.citedreferenceGillotin S, iASPP, a potential drug target in cancer therapy. Leukemia Res 2009; 33: 1175 – 1177.en_US
dc.identifier.citedreferenceLaska MJ, Vogel UB, Jensen UB, et al. p53 and PPP1R13L (alias iASPP or RAI) form a feedback loop to regulate genotoxic stress responses. Biochim Biophys Acta 2010; 1800: 1231 – 1240.en_US
dc.identifier.citedreferenceYin J, Guo L, Wang C, et al. Effects of PPP1R13L and CD3EAP variants on lung cancer susceptibility among nonsmoking Chinese women. Gene 2013; 524: 228 – 231.en_US
dc.identifier.citedreferencePinto EM, Musolino NR, Cescato VA, et al. iASPP: A novel protein involved in pituitary tumorigenesis ? Front Horm Res 2010; 38: 70 – 76.en_US
dc.identifier.citedreferenceZhang X, Wang M, Zhou C, et al. The expression of iASPP in acute leukemias. Leukemia Res 2005; 29: 179 – 183.en_US
dc.identifier.citedreferenceWang F, Chang D, Hu FL, et al. DNA repair gene XPD polymorphisms and cancer risk: A meta‐analysis based on 56 case‐control studies. Cancer Epidemiol Biomarkers Prev 2008; 17: 507 – 517.en_US
dc.identifier.citedreferencePopp HD, Bohlander SK. Genetic instability in inherited and sporadic leukemias. Genes Chromosome Cancer 2010; 49: 1071 – 1081.en_US
dc.identifier.citedreferenceAllan JM, Smith AG, Wheatley K, et al. Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 2004; 104: 3872 – 3877.en_US
dc.identifier.citedreferenceSusini MC, Guglielmelli P, Spolverini A, et al. The ERCC2 Gln/Gln polymorphism at codon 751 is not associated with leukaemic transformation in primary myelofibrosis. Br J Haematol 2013; 162: 424 – 427.en_US
dc.identifier.citedreferencePoletto V, Villani L, Catarsi P, et al. No association between the XPD Lys751Gln (rs13181) polymorphism and disease phenotype or leukemic transformation in primary myelofibrosis. Haematologica 2013; 98: e83 – 84.en_US
dc.identifier.citedreferenceGanster C, Neesen J, Zehetmayer S, et al. DNA repair polymorphisms associated with cytogenetic subgroups in B‐cell chronic lymphocytic leukemia. Genes Chromosome Cancer 2009; 48: 760 – 767.en_US
dc.identifier.citedreferenceChokkalingam AP, Bartley K, Wiemels JL, et al. Haplotypes of DNA repair and cell cycle control genes, X‐ray exposure, and risk of childhood acute lymphoblastic leukemia. Cancer Cause Control 2011; 22: 1721 – 1730.en_US
dc.identifier.citedreferenceBatar B, Guven M, Baris S, et al. DNA repair gene XPD and XRCC1 polymorphisms and the risk of childhood acute lymphoblastic leukemia. Leukemia Res 2009; 33: 759 – 763.en_US
dc.identifier.citedreferencePakakasama S, Sirirat T, Kanchanachumpol S, et al. Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2007; 48: 16 – 20.en_US
dc.identifier.citedreferenceAlvarez‐Cubero MJ, Saiz M, Martinez‐Gonzalez LJ, et al. Genetic analysis of the principal genes related to prostate cancer: A review. Urol Oncol 2013; 31: 1419 – 1429.en_US
dc.identifier.citedreferenceSun J, Hsu FC, Turner AR, et al. Meta‐analysis of association of rare mutations and common sequence variants in the MSR1 gene and prostate cancer risk. Prostate 2006; 66: 728 – 737.en_US
dc.identifier.citedreferenceChen Y, Sullivan C, Peng C, et al. A tumor suppressor function of the Msr1 gene in leukemia stem cells of chronic myeloid leukemia. Blood 2011; 118: 390 – 400.en_US
dc.identifier.citedreferenceXu H, Yang W, Perez‐Andreu V, et al. Novel susceptibility variants at 10p12.31–12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Canc Inst 2013; 105: 733 – 742.en_US
dc.identifier.citedreferenceSeimon TA, Obstfeld A, Moore KJ, et al. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci U S A 2006; 103: 19794 – 19799.en_US
dc.identifier.citedreferenceTanaka T, Akira S, Yoshida K, et al. Targeted disruption of the NF‐IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 1995; 80: 353 – 361.en_US
dc.identifier.citedreferenceSchmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto‐oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68 – 73.en_US
dc.identifier.citedreferenceSchutz FA, Pomerantz MM, Gray KP, et al. Single nucleotide polymorphisms and risk of recurrence of renal‐cell carcinoma: A cohort study. Lancet Oncol 2013; 14: 81 – 87.en_US
dc.identifier.citedreferencePui CH, Carroll WL, Meshinchi S, et al. Biology, risk stratification, and therapy of pediatric acute leukemias: An update. J Clin Oncol 2011; 29: 551 – 565.en_US
dc.identifier.citedreferenceMullighan CG. Molecular genetics of B‐precursor acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3407 – 3415.en_US
dc.identifier.citedreferencePapaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009; 41: 1006 – 1010.en_US
dc.identifier.citedreferenceTrevino LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009; 41: 1001 – 1005.en_US
dc.identifier.citedreferenceHan S, Lee KM, Park SK, et al. Genome‐wide association study of childhood acute lymphoblastic leukemia in Korea. Leukemia Res 2010; 34: 1271 – 1274.en_US
dc.identifier.citedreferenceSherborne AL, Hosking FJ, Prasad RB, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet 2010; 42: 492 – 494.en_US
dc.identifier.citedreferenceEllinghaus E, Stanulla M, Richter G, et al. Identification of germline susceptibility loci in ETV6‐RUNX1‐rearranged childhood acute lymphoblastic leukemia. Leukemia 2012; 26: 902 – 909.en_US
dc.identifier.citedreferenceEnciso‐Mora V, Hosking FJ, Sheridan E, et al. Common genetic variation contributes significantly to the risk of childhood B‐cell precursor acute lymphoblastic leukemia. Leukemia 2012; 26: 2212 – 2215.en_US
dc.identifier.citedreferenceWesolowska A, Dalgaard MD, Borst L, et al. Cost‐effective multiplexing before capture allows screening of 25,000 clinically relevant SNPs in childhood acute lymphoblastic leukemia. Leukemia 2011; 25: 1001 – 1006.en_US
dc.identifier.citedreferencePacker BR, Yeager M, Burdett L, et al. SNP500Cancer: A public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucl Acid Res 2006; 34: D617 – D621.en_US
dc.identifier.citedreferenceVijayakrishnan J, Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta‐analysis. Haematologica 2010; 95: 1405 – 1414.en_US
dc.identifier.citedreferenceTrenk D, Hochholzer W, Fromm MF, et al. Paraoxonase‐1 Q192R polymorphism and antiplatelet effects of clopidogrel in patients undergoing elective coronary stent placement. Circ Cardiovasc Genet 2011; 4: 429 – 436.en_US
dc.identifier.citedreferencePurcell S, Neale B, Todd‐Brown K, et al. PLINK: A tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet 2007; 81: 559 – 575.en_US
dc.identifier.citedreferenceDupont WD, Plummer WD, Jr. Power and sample size calculations. A review and computer program. Controlled Clin Trials 1990; 11: 116 – 128.en_US
dc.identifier.citedreferenceWang L, Yin F, Xu X, et al. X‐ray repair cross‐complementing group 1 (XRCC1) genetic polymorphisms and risk of childhood acute lymphoblastic leukemia: A meta‐analysis. PLoS ONE 2012; 7: e34897.en_US
dc.identifier.citedreferenceUrayama KY, Chokkalingam AP, Manabe A, et al. Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia. Int J Hematol 2013; 97: 3 – 19.en_US
dc.identifier.citedreferenceWang H, Wang J, Zhao L, et al. Methylenetetrahydrofolate reductase polymorphisms and risk of acute lymphoblastic leukemia‐evidence from an updated meta‐analysis including 35 studies. BMC Med Genet 2012; 13: 77.en_US
dc.identifier.citedreferencede Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate‐related genes and risk of pediatric acute lymphoblastic leukemia. Blood 2009; 113: 2284 – 2289.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.