Show simple item record

Regulatory Roles of miRNA in the Human Neural Stem Cell Transformation to Glioma Stem Cells

dc.contributor.authorLiu, Shuangen_US
dc.contributor.authorYin, Fengen_US
dc.contributor.authorZhang, Jianningen_US
dc.contributor.authorWicha, Max S.en_US
dc.contributor.authorChang, Alfred E.en_US
dc.contributor.authorFan, Wenhongen_US
dc.contributor.authorChen, Lingen_US
dc.contributor.authorFan, Mingen_US
dc.contributor.authorLi, Qiaoen_US
dc.date.accessioned2014-07-03T14:41:32Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-07-03T14:41:32Z
dc.date.issued2014-08en_US
dc.identifier.citationLiu, Shuang; Yin, Feng; Zhang, Jianning; Wicha, Max S.; Chang, Alfred E.; Fan, Wenhong; Chen, Ling; Fan, Ming; Li, Qiao (2014). "Regulatory Roles of miRNA in the Human Neural Stem Cell Transformation to Glioma Stem Cells." Journal of Cellular Biochemistry 115(8): 1368-1380.en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107550
dc.description.abstractTo investigate the expressional alternation of microRNAs (miRNA) during the malignant transformation and development of human glioma, we measured miRNA expression profile as well as mRNA expression profile in normal human neural stem cells (hNSCs) and human glioma stem cells (hGSCs). We found 116 miRNA up‐regulated and 62 miRNA down‐regulated in GSCs. On the other hand, we identified 1,372 mRNA down‐regulated, and 1,501 mRNA up‐regulated in GSCs compared to those in NSCs. We then analyzed the pathways and the predicted target genes of the miRNAs which differ significantly in expression between GSCs and NSCs using the statistical enrichment methods. These target mRNAs are involved in many cancer‐related signaling pathways, such as cell cycle, axon guidance, glioma development, adhesion junction, MAPK and Wnt signaling. Furthermore, we obtained the differently expressed miRNA‐target relationships according to the θ value which is used to calculate the regulation extent of miRNA‐target and using the databases of miRanda, Targetscans and Pictar. Among the top 10 miRNA‐target relationships, hsa‐miR‐198 and its potential targeted gene DCX and NNAT were selected for validation, and NNAT was found to be the direct target of miR‐198. Finally, the functional roles of miR‐155–5p and miR‐124–3p whose expressions altered significantly between GSCs and NSCs were addressed. Our results provide new clues for the potential mechanisms involved in the origin and development of glioma. Clinically, the altered miRNAs may serve as potential targets and diagnostic tools for novel therapeutic strategies of glioblastoma. J. Cell. Biochem. 115: 1368–1380, 2014. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMicroRNAen_US
dc.subject.otherMICROARRAYen_US
dc.subject.otherREGULATORY NETWORKen_US
dc.subject.otherHUMAN GLIOMA STEM CELLSen_US
dc.subject.otherHUMAN NEURAL STEM CELLSen_US
dc.titleRegulatory Roles of miRNA in the Human Neural Stem Cell Transformation to Glioma Stem Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107550/1/jcb24786.pdf
dc.identifier.doi10.1002/jcb.24786en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferenceQinyan Y, Xia W, Claire F, Cameron J, Zhu H, Baddoo M, Lin Z, Flemington EK. 2010. MicroRNA MiR‐155 inhibits bone morphogenetic protein (BMP) signaling and BMP‐mediated Epstein‐barr virus reactivation. J Virol 84: 6318 – 6327.en_US
dc.identifier.citedreferenceKesari S, Stiles CD. 2006. The bad seed: PDGF receptors link adult neural progenitors to glioma stem cells. Neuron 51: 151 – 153.en_US
dc.identifier.citedreferenceLang MF, Yang S, Zhao C, Sun G, Mural K, Wu X, Wang J, Gao H, Brown CE, Liu X, Zhou J, Peng L, Rossi JJ, Shi Y. 2012. Genome‐wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS ONE 7: e36248. Doi: 10.1371/journal.pone.0036248.en_US
dc.identifier.citedreferenceLee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotilarova S, Kotliarov Y, Walling J, Ann S, Kim M, Totonchy M, Cusack T, Ene C, Ma H, Su Q, Zenklusen JC, Zhang W, Maric D, Fine HA. 2008. Epigenetic‐mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma‐initiating cells. Cancer cell 13: 69 – 80.en_US
dc.identifier.citedreferenceLeone PE, González MB, Elosua C, Gomez‐Moreta JA, Lumbreras E, Robledo C, Santos‐Briz A, Valero JM, de la Guardia RD, Gutierrez NC, Hemandez JM, Garcia JL. 2012. Integration of global spectral karyotyping, CGH arrays, and expression arrays reveals important genes in the pathogenesis of glioblastoma multiforme. Ann Surg Oncol 19: 2367 – 2379.en_US
dc.identifier.citedreferenceLili Jiang, Qin Huang, Siyang Zhang, Zhang Q, Chang J, Qiu X, Wang E. 2010. Hsa‐miR‐125a‐3p and hsa‐125a‐5p are downregulated in non‐small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 10: 318 – 321.en_US
dc.identifier.citedreferenceLim LP, Lau NC, Garrett‐Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNA. Nature 433: 769 – 773.en_US
dc.identifier.citedreferenceMaher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavvenee WK, DePinho RA. 2001. Malignant glioma: genetics and biology of a grave matter. Genes Dev 15: 1311 – 1333.en_US
dc.identifier.citedreferencePiccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL. 2006. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour‐initiating cells. Nature 444: 761 – 765.en_US
dc.identifier.citedreferencePengXu Qian, Arindam Banerjee, ZhengSheng Wu, Zhang X, Wang H, Pandey V, Zhang WJ, Lv XF, Tan S, Lobie PE, Zhu T. 2012. Loss of SNAIL regulated miR‐128‐2 on chromosome 3p22. 3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res 72: 6036 – 6050.en_US
dc.identifier.citedreferencePiccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL. 2006. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour‐initiating cells. Nature 444: 761 – 765.en_US
dc.identifier.citedreferencePozzi V, Mazzotta M, Lo Muzio L, Sartlni D, Santarelli A, Renzi E, Rocchetti R, Tomasetti M, Ciavarella D, Emanuelli M. 2011. Inhibiting proliferation in KB cancer cell by RNA interference‐mediated knockdown of nicotinamide N‐Methyltransferase expression. Int J Immunopathol Pharmacol 24: 69 – 77.en_US
dc.identifier.citedreferencePragathi A, Neda ISR, Alfredo QH. 2010. Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer Agents Med Chem 10: 121 – 130.en_US
dc.identifier.citedreferenceQi B, Yao WJ, Zhao BS, Qin XG, Wang Y, Wang WJ, Wang TY, Liu SG, Li HC. 2013. Involvement of microRNA‐198 overexpression in the poor prognosis of esophageal cancer. Asian Pac J Cancer Prev 14: 5073 – 5076.en_US
dc.identifier.citedreferenceQuinones‐Hinojosa A, Chaichana K. 2007. The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol 205: 313 – 324.en_US
dc.identifier.citedreferenceRich JN. 2007. Cancer stem cells in radiation resistance. Cancer Res 67: 8980 – 8984.en_US
dc.identifier.citedreferenceSherry MM, Reeves A, Wu JK, Cochran BH. 2009. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27: 2383 – 2392.en_US
dc.identifier.citedreferenceShuang L, Feng Y, Wen‐hong F, Shuwei W, Guoxin R, Jianning Z, Zengmin T, Ming F. 2012. Over‐expression of BMPR‐IB reduces the malignancy of glioblastoma cells by upregulation of p 21 and p27Kip1. J Exp Clin Cancer Res. DOI: 10.1186/17569966‐3152.en_US
dc.identifier.citedreferenceShuang L, Zengmin T, Feng Y, Quanjun Z, Ming F. 2009. Generation of dopaminergic neurons from human fetal mesencephalic progenitors after co‐culture with striatal‐conditioned media and exposure to lowered oxygen. Brain Res Bull 80: 62 – 68.en_US
dc.identifier.citedreferenceSilber J, Hashizume R, Felix T, Hariono S, Yu M, Berger MS, et al. 2013. Expression of miR‐124 inhibits growth of medulloblastoma cells. Neuro Oncol 15: 83 – 90.en_US
dc.identifier.citedreferenceSilber J, Lim DA, Petrisch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez‐Buylla A, Hodgson G. 2008. MiR‐124 and miR‐137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine 24: 6 – 14.en_US
dc.identifier.citedreferenceSingh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. 2004. Identification of human brain tumour initiating cells. Nature 432: 396 – 401.en_US
dc.identifier.citedreferenceWang Q, Li P, Li A, Jiang W, Wang H, Wang J, Xie K. 2012. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Res.en_US
dc.identifier.citedreferenceWu C, Liu X, Wang Y, Tian H, Xie Y, Li Q, Zhang X, Liu F. 2013. Insulin‐like factor binding protein‐3 promotes the G1 cell cycle arrest in several cancer cell lines. Gene 512: 127 – 133.en_US
dc.identifier.citedreferenceXu DS, Yang C, Proescholdt M, Brundl E, Brawanski A, Fang X, Lee CS, Well RJ, Zhuang Z, Lonser RR. 2012. Neuronatin in a subset of glioblastoma multiforme tumor progenitor cells is associated with increased cell proliferation and shorter patient survival. PLoS One 7: e37811. Doi: 10.1371/journal.pone.0037811.en_US
dc.identifier.citedreferenceYing Zhang, Anindya Dutta, Roger Abounader. 2012. The role of microRNAs in glioma initiation and progression. Front Biosci 17: 700 – 712.en_US
dc.identifier.citedreferenceYu J, Cai X, He J, Zhao W, Wang Q, Liu B. 2012. 2012. Microarray‐based analysis of gene regulation by transcription factors and microRNAs in glioma. Neurol Sci.en_US
dc.identifier.citedreferenceYu N, Bian‐Mei H, Xue‐Bin L, Yang JJ, Wang F, Cong XF, Chen X. 2011. Identification of microRNAs involved in hypoxia‐ and serum deprivation‐induced apoptosis in mesenchymal stem cells. Intern J Biol Sci 7: 762 – 768.en_US
dc.identifier.citedreferenceZheng H, Ying H, Yan H, Kimmelman AC, Hiler DJ, Chen AJ, DePinho RA. 2008. P53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455: 1129 – 1133.en_US
dc.identifier.citedreferenceZhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF. 2005. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8: 119 – 130.en_US
dc.identifier.citedreferenceAihua Gong, Suyun Huang. 2012. FoxM1 and wnt/ß‐catenin signaling in glioma stem cells. Cancer Res 72: 5658 – 5662.en_US
dc.identifier.citedreferenceBartel DP. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116: 281 – 297.en_US
dc.identifier.citedreferenceBartel DP. 2009. MicroRNAs: Target recognition and regulatory functions. Cell 136: 215 – 233.en_US
dc.identifier.citedreferenceBerezikov E, Guryev V, Van de Belt J, Wienholds E, Plasterk RH, Cuppen E. 2005. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21 – 24.en_US
dc.identifier.citedreferenceCalabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69 – 82.en_US
dc.identifier.citedreferenceChaichana KL, Guerrero‐Cazares H, Capilla‐Gonzalez V, Zamora‐Berridi G, Achanta P, Gonzalez‐Perez O. 2009. Intra‐operatively obtained human tissue: protocols and techniques for the study of neural stem cells. J Neurosci Methods 180: 116 – 125.en_US
dc.identifier.citedreferenceChan XH, Nama S, Gopal F, Rizk P, Ramasamy S, Sundaram G, Ow GS, Ivshina AV, Tanavde V, Haybaeck J, Kuznetsov V, Sampath P. 2012. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR‐138 in malignant gliomas. Cell Reports 27: 591 – 602.en_US
dc.identifier.citedreferenceCroce CM. 2009. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704 – 714.en_US
dc.identifier.citedreferenceDean M, Fojo T, Bates S. 2005. Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275 – 284.en_US
dc.identifier.citedreferenceDinorah FM, Eric Bushong A, Eugene Ke, Soda Y, Marumoto T, Singer O, Ellisman MH. 2012. Dedifferentiation of neurons and astrocytes by oncogenes can induce glioma in mice. Science 338: 1080 – 1084.en_US
dc.identifier.citedreferenceFriedman RC, Farh KK, Burge CB, Bartel DP. 2008. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92 – 105.en_US
dc.identifier.citedreferenceGalli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. 2004. Isolation and characterization of tumorigenic, stem‐like neural precursors from human glioblastoma. Cancer Res 64: 7011 – 7021.en_US
dc.identifier.citedreferenceGeraldo MV, Yamashita AS, Kimura ET. 2012. MicroRNA miR‐146b‐5p regulates signal transduction of TGF‐β by repressing SMAD4 in thyroid cancer. Oncogene 31: 1910 – 1922.en_US
dc.identifier.citedreferenceGoljanek‐Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Münsterberg A. 2012. Regulation of multiple target genes by miR‐1 and miR‐206 is pivotal for C2C12 myblast differentiation. J Cell Sci 125: 3590 – 3600.en_US
dc.identifier.citedreferenceHwang HW, Mendell JT. 2006. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94: 776 – 780.en_US
dc.identifier.citedreferenceKatakowski M, Zheng X, Jiang F, Rogers T, Szalad A, Chopp M. 2010. MiR‐146b‐5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest 28: 1024 – 1030.en_US
dc.identifier.citedreferenceKatz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC. 2012. Astrocyte‐specific expression patterns associated with the PDGF‐induced glioma microenvironment. PLoS One 7: e32453. DOI: 10.1371/journal.pone.0032453.en_US
dc.identifier.citedreferenceKesari S, Stiles CD. 2006. The bad seed: PDGF receptors link adult neural progenitors to glioma stem cells. Neuron 51: 151 – 153.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.