Show simple item record

Disentangling the influence of climatic and geological changes on species radiations

dc.contributor.authorLinder, H. Peteren_US
dc.contributor.authorRabosky, Daniel L.en_US
dc.contributor.authorAntonelli, Alexandreen_US
dc.contributor.authorWüest, Rafael O.en_US
dc.contributor.authorOhlemüller, Ralfen_US
dc.date.accessioned2014-07-03T14:41:35Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:35Z
dc.date.issued2014-07en_US
dc.identifier.citationLinder, H. Peter; Rabosky, Daniel L.; Antonelli, Alexandre; Wüest, Rafael O. ; Ohlemüller, Ralf (2014). "Disentangling the influence of climatic and geological changes on species radiations." Journal of Biogeography 41(7): 1313-1325.en_US
dc.identifier.issn0305-0270en_US
dc.identifier.issn1365-2699en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107558
dc.description.abstractAim Our aim was to seek explanations for the differences in the diversity among the austral continents by comparing the diversification rates and patterns in the grass subfamily Danthonioideae. We asked specifically whether diversification is density dependent, whether it is different for each continent, and whether immigration rates impact on diversification rates. We attempted to account for intercontinental differences by comparing the Pleistocene climatic and Neogene geomorphological histories with the inferred diversification rates. Location Mainly the Southern Hemisphere, treated as four areas for the analyses: Africa, Australia, New Zealand and South America. Methods We based our analyses on a densely sampled, dated phylogeny for the grass subfamily Danthonioideae. We compared 24 diversification models for these continental radiations, taking into account speciation models, and extinction and dispersal rates. We used available distribution data to infer the climates under which danthonioids are found, and used these to estimate the change in area and location of suitable habitats between contemporary and Last Glacial Maximum climates. We inferred the geomorphological history from the literature. Results We show that long‐distance dispersal led to parallel radiations, which more than doubled the final standing diversity in the subfamily. Diversification models with the strongest support included separate time‐varying diversification processes for each major geographical region. Pleistocene climatic fluctuation did not explain the intercontinental differences in diversification patterns. Main conclusions Although our results are consistent with density‐dependent diversification, this explanation is not consistent with the time of arrival of danthonioids on each continent. The diversification patterns on the four major Southern Hemisphere landmasses are idiosyncratic. The two most important predictors of diversity may be the lineage‐specific effect of time, and the general effect of topographical complexity and orogenesis.en_US
dc.publisherABRS/CSIROen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDispersalen_US
dc.subject.otherGeomorphologyen_US
dc.subject.otherLast Glacial Maximumen_US
dc.subject.otherOrogenyen_US
dc.subject.otherPoaceaeen_US
dc.subject.otherSpeciationen_US
dc.subject.otherDiversification Ratesen_US
dc.subject.otherExtinctionen_US
dc.subject.otherDanthonioideaeen_US
dc.titleDisentangling the influence of climatic and geological changes on species radiationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeography and Mapsen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107558/1/jbi12312.pdf
dc.identifier.doi10.1111/jbi.12312en_US
dc.identifier.sourceJournal of Biogeographyen_US
dc.identifier.citedreferencePirie, M.D., Humphreys, A.M., Barker, N.P. & Linder, H.P. ( 2009 ) Reticulation, data combination, and inferring evolutionary history: an example from Danthonioideae (Poaceae). Systematic Biology, 58, 612 – 628.en_US
dc.identifier.citedreferenceMeudt, H.M., Lockhart, P.J. & Bryant, D. ( 2009 ) Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evolutionary Biology, 9, 111.en_US
dc.identifier.citedreferenceNee, S., Holmes, E.C., May, R.M. & Harvey, P.H. ( 1994 ) Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society B: Biological Sciences, 344, 77 – 82.en_US
dc.identifier.citedreferenceNewnham, R., McGlone, M., Moar, N., Wilmshurst, J. & Vandergoes, M. ( 2013 ) The vegetation cover of New Zealand at the Last Glacial Maximum. Quaternary Science Reviews, 74, 202 – 214.en_US
dc.identifier.citedreferencePahnke, K., Zahn, R., Elderfield, H. & Schulz, M. ( 2003 ) 340,000‐year centennial‐scale marine record of Southern Hemisphere climatic oscillation. Science, 301, 948 – 952.en_US
dc.identifier.citedreferencePartridge, T.C. & Maud, R.R. ( 2000 ) Macro‐scale geomorphic evolution of southern Africa. The Cenozoic of southern Africa (ed. by T.C. Partridge and R.R. Maud ), pp. 3 – 18. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferencePhillimore, A.B. & Price, T.D. ( 2008 ) Density‐dependent cladogenesis in birds. PLoS Biology, 6, 483 – 489.en_US
dc.identifier.citedreferenceQuental, T.B. & Marshall, C.R. ( 2011 ) The molecular phylogenetic signature of clades in decline. PLoS ONE, 6, e25780.en_US
dc.identifier.citedreferenceRabosky, D.L. ( 2009a ) Ecological limits on clade diversification in higher taxa. The American Naturalist, 173, 662 – 674.en_US
dc.identifier.citedreferenceRabosky, D.L. ( 2009b ) Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters, 12, 735 – 743.en_US
dc.identifier.citedreferenceRabosky, D.L. ( 2010 ) Extinction rates should not be estimated from molecular phylogenies. Evolution, 64, 1816 – 1824.en_US
dc.identifier.citedreferenceRabosky, D.L. & Glor, R.E. ( 2010 ) Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proceedings of the National Academy of Sciences USA, 107, 22178 – 22183.en_US
dc.identifier.citedreferenceRabosky, D.L. & Lovette, I.J. ( 2008a ) Density‐dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences, 275, 2363 – 2371.en_US
dc.identifier.citedreferenceRabosky, D.L. & Lovette, I.J. ( 2008b ) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution, 62, 1866 – 1875.en_US
dc.identifier.citedreferenceRandin, C.F., Engler, R., Normand, S., Zappa, M., Zimmerman, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A. ( 2009 ) Climate change and plant distribution: local models predict high‐elevation persistence. Global Change Biology, 15, 1557 – 1569.en_US
dc.identifier.citedreferenceRee, R.H. & Smith, S.A. ( 2008 ) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4 – 14.en_US
dc.identifier.citedreferenceSandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.‐C. ( 2011 ) The influence of late Quaternary climate‐change velocity on species endemism. Science, 334, 660 – 664.en_US
dc.identifier.citedreferenceSepkoski, J.J., Jr ( 1978 ) A kinetic model of phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4, 223 – 251.en_US
dc.identifier.citedreferenceSepulchre, P., Sloan, L.C. & Fluteau, F. ( 2010 ) Modelling the response of Amazonian climate to the uplift of the Andean mountain range. Amazonia, landscape and species evolution (ed. by C. Hoorn and F. Wesselingh ), pp. 211 – 222. Blackwell Publishing, Chichester, UK.en_US
dc.identifier.citedreferenceSniderman, J.M.K., Jordan, G.J. & Cowling, R.M. ( 2013 ) Fossil evidence for a hyperdiverse sclerophyll flora under a non–Mediterranean‐type climate. Proceedings of the National Academy of Sciences USA, 110, 3423 – 3428.en_US
dc.identifier.citedreferenceSoetaert, K., Petzoldt, T. & Setzer, R.W. ( 2011 ) deSolve: general solvers for initial value problems of ordinary differential equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE), and delay differential equations (DDE). Available at: http://cran.r-project.org/web/packages/deSolve/index.html (accessed January 2011).en_US
dc.identifier.citedreferenceVerboom, G.A., Archibald, J.K., Bakker, F.T., Bellstedt, D.U., Conrad, F., Dreyer, L.L., Forest, F., Galley, C., Goldblatt, P., Henning, J.F., Mummenhoff, K., Linder, H.P., Muasya, A.M., Oberlander, K.C., Savolainen, V., Snijman, D.A., van der Niet, T. & Nowell, T.L. ( 2009 ) Origin and diversification of the Greater Cape flora: ancient species repository, hot‐bed of recent radiation, or both? Molecular Phylogenetics and Evolution, 51, 44 – 53.en_US
dc.identifier.citedreferenceWagner, C.E., Harmon, L.J. & Seehausen, O. ( 2012 ) Ecological opportunity and sexual selection together predict adaptive radiation. Nature, 487, 366 – 369.en_US
dc.identifier.citedreferenceWagner, W.L. & Funk, V.A. (eds) ( 1995 ) Hawaiian biogeography: evolution of a hotspot archipelago. Smithsonian Institution Press, Washington, DC.en_US
dc.identifier.citedreferenceWagstaff, S.J., Bayly, M.J., Garnock‐Jones, P.J. & Albach, D.C. ( 2002 ) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae). Annals of the Missouri Botanical Garden, 89, 38 – 63.en_US
dc.identifier.citedreferenceWagstaff, S.J., Dawson, M.I., Venter, S., Munzinger, J., Crayn, D.M., Steane, D.A. & Lemson, K.L. ( 2010 ) Origin, diversification, and classification of the Australasian genus Dracophyllum (Richeeae, Ericaceae). Annals of the Missouri Botanical Garden, 97, 235 – 258.en_US
dc.identifier.citedreferenceWiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A. & Reeder, T.W. ( 2006 ) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American Naturalist, 168, 579 – 596.en_US
dc.identifier.citedreferenceWiens, J.J., Sukumaran, J., Pyron, R.A. & Brown, R.M. ( 2009 ) Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae). Evolution, 63, 1217 – 1231.en_US
dc.identifier.citedreferenceWinkworth, R.C., Wagstaff, S.J., Glenny, D. & Lockhart, P.J. ( 2005 ) Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Organisms Diversity & Evolution, 5, 237 – 247.en_US
dc.identifier.citedreferenceAlroy, J. ( 2008 ) Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA, 105, 11536 – 11542.en_US
dc.identifier.citedreferenceAntonelli, A., Nylander, J.A.A., Persson, C. & Sanmartín, I. ( 2009 ) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences USA, 106, 9749 – 9754.en_US
dc.identifier.citedreferenceAntonelli, A., Humphreys, A.M., Lee, W.G. & Linder, H.P. ( 2011 ) Absence of mammals and the evolution of New Zealand grasses. Proceedings of the Royal Society B: Biological Sciences, 278, 695 – 701.en_US
dc.identifier.citedreferenceBacon, C.D., Baker, W.J. & Simmons, M.P. ( 2012 ) Miocene dispersal drives island radiations in the palm tribe Trachycarpeae (Arecaceae). Systematic Biology, 61, 426 – 442.en_US
dc.identifier.citedreferenceBaldwin, B.G. & Wagner, W.L. ( 2010 ) Hawaiian angiosperm radiations of North American origin. Annals of Botany, 105, 849 – 879.en_US
dc.identifier.citedreferenceBershaw, J., Garzione, C.N., Higgins, P., MacFadden, B.J., Anaya, F. & Alvarenga, H. ( 2010 ) Spatial‐temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289, 530 – 538.en_US
dc.identifier.citedreferenceBraconnot, P., Otto‐Bliesner, B., Harrison, S. et al. ( 2007 ) Results of PMIP2 coupled simulations of the Mid‐Holocene and Last Glacial Maximum – Part 1: experiments and large‐scale features. Climate of the Past, 3, 261 – 277.en_US
dc.identifier.citedreferenceChase, B.M. & Meadows, M.E. ( 2007 ) Late Quaternary dynamics of southern Africa's winter rainfall zone. Earth‐Science Reviews, 84, 103 – 138.en_US
dc.identifier.citedreferenceCorlett, R.T. & Westcott, D.A. ( 2013 ) Will plant movements keep up with climate change? Trends in Ecology and Evolution, 28, 482 – 488.en_US
dc.identifier.citedreferenceCowling, R.M., Rundel, P.W., Lamont, B.B., Arroyo, M.K. & Arianoutsou, M. ( 1996 ) Plant diversity in mediterranean‐climate regions. Trends in Ecology and Evolution, 11, 362 – 366.en_US
dc.identifier.citedreferenceCowling, R.M., Procheş, Ş. & Partridge, T.C. ( 2009 ) Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor for explaining its diversification. Molecular Phylogenetics and Evolution, 51, 64 – 74.en_US
dc.identifier.citedreferenceCrisp, M.D. & Cook, L.G. ( 2009 ) Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution, 63, 2257 – 2265.en_US
dc.identifier.citedreferenceDrummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. ( 2006 ) Relaxed phylogenetics and dating with confidence. PloS Biology, 4, 699 – 710.en_US
dc.identifier.citedreferenceDupont, L.M., Linder, H.P., Rommerskirchen, F. & Schefuss, E. ( 2011 ) Climate‐driven rampant speciation of the Cape flora. Journal of Biogeography, 38, 1059 – 1068.en_US
dc.identifier.citedreferenceEtienne, R.S., Haegeman, B., Stadler, T., Aze, T., Pearson, P.N., Purvis, A. & Phillimore, A.B. ( 2012 ) Diversity‐dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences, 279, 1300 – 1309.en_US
dc.identifier.citedreferenceFitzJohn, R.G., Maddison, W.P. & Otto, S.P. ( 2009 ) Estimating trait‐dependent speciation and extinction rates from incompletely resolved phylogenies. Systematic Biology, 58, 595 – 611.en_US
dc.identifier.citedreferenceGalley, C. & Linder, H.P. ( 2006 ) Geographical affinities of the Cape flora, South Africa. Journal of Biogeography, 33, 236 – 250.en_US
dc.identifier.citedreferenceGivnish, T.J., Millam, K.C., Mast, A.R., Paterson, T.B., Theim, T.J., Hipp, A.L., Henss, J.M., Smith, J.F., Wood, K.R. & Sytsma, K.J. ( 2009 ) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society B: Biological Sciences, 276, 407 – 416.en_US
dc.identifier.citedreferenceGoldberg, E.E., Lancaster, L.T. & Ree, R.H. ( 2011 ) Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology, 60, 451 – 465.en_US
dc.identifier.citedreferenceGregory‐Wodzicki, K.M. ( 2000 ) Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112, 1091 – 1105.en_US
dc.identifier.citedreferenceHeenan, P.B. & McGlone, M.S. ( 2013 ) Evolution of New Zealand alpine and open‐habitat plant species during the late Cenozoic. New Zealand Journal of Ecology, 37, 105 – 113.en_US
dc.identifier.citedreferenceHijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. ( 2005 ) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978.en_US
dc.identifier.citedreferenceHill, R.S., Truswell, E.M., McLoughlin, S. & Dettmann, M.E. ( 1999 ) Evolution of the Australian flora: fossil evidence. Flora of Australia, Vol. 43 (ed. by A.E. Orchard ), pp. 251 – 320. ABRS/CSIRO, Melbourne.en_US
dc.identifier.citedreferenceHodges, S.A. & Arnold, M.L. ( 1995 ) Spurring plant diversification: are floral nectar spurs a key innovation? Proceedings of the Royal Society B: Biological Sciences, 262, 343 – 348.en_US
dc.identifier.citedreferenceHoldgate, G.R., Wallace, M.W., Gallagher, S.J., Wagstaff, B.E. & Moore, D. ( 2008 ) No mountains to snow on: major post‐Eocene uplift of the East Victoria Highlands; evidence from Cenozoic deposits. Australian Journal of Earth Sciences, 55, 1184 – 1187.en_US
dc.identifier.citedreferenceHoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez‐Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A. ( 2010 ) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927 – 931.en_US
dc.identifier.citedreferenceHughes, C. & Eastwood, R. ( 2006 ) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA, 103, 10334 – 10339.en_US
dc.identifier.citedreferenceJuan, C., Emerson, B.C., Oromí, P. & Hewitt, G.M. ( 2000 ) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends in Evolution and Ecology, 15, 104 – 109.en_US
dc.identifier.citedreferenceKarl, R. & Koch, M.A. ( 2013 ) A world‐wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Annals of Botany, 112, 983 – 1001.en_US
dc.identifier.citedreferenceKier, G., Kreft, H., Lee, T.M., Jetz, W., Ibisch, P.L., Nowicki, C., Mutke, J. & Barthlott, W. ( 2009 ) A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences USA, 106, 9322 – 9327.en_US
dc.identifier.citedreferenceLancaster, L.T. & Kay, K.M. ( 2013 ) Origin and diversification of the California flora: re‐examining classic hypotheses with molecular phylogenies. Evolution, 67, 1041 – 1054.en_US
dc.identifier.citedreferenceLi, L., Li, Q., Tian, J., Wang, P., Wang, H. & Liu, Z. ( 2011 ) A 4‐Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters, 309, 10 – 20.en_US
dc.identifier.citedreferenceLinder, H.P. ( 2003 ) The radiation of the Cape flora, southern Africa. Biological Reviews, 78, 597 – 638.en_US
dc.identifier.citedreferenceLinder, H.P. & Barker, N.P. ( 2000 ) Biogeography of the Danthonieae. Grass Systematics and Evolution – Vol. 2 of Proceedings of the Second International Conference on the Comparative Biology of the Monocots, Sydney, September 1998 (ed. by S.W.L. Jacobs and J. Everett ), pp. 231 – 238. CSIRO, Melbourne.en_US
dc.identifier.citedreferenceLinder, H.P., Eldenäs, P. & Briggs, B.G. ( 2003 ) Contrasting patterns of radiation in African and Australian Restionaceae. Evolution, 57, 2688 – 2702.en_US
dc.identifier.citedreferenceLinder, H.P., Dlamini, T., Henning, J. & Verboom, G.A. ( 2006 ) The evolutionary history of Melianthus (Melianthaceae). American Journal of Botany, 93, 1052 – 1064.en_US
dc.identifier.citedreferenceLinder, H.P., Baeza P., C.M., Barker, N.P., Galley, C., Humphreys, A.M., Lloyd, K.M., Orlovich, D.A., Pirie, M.D., Simon, B.K., Walsh, N.G. & Verboom, G.A. ( 2010 ) A generic classification of the Danthonioideae (Poaceae). Annals of the Missouri Botanical Garden, 97, 306 – 364.en_US
dc.identifier.citedreferenceLinder, H.P., Bykova, O., Dyke, J., Etienne, R.S., Hickler, T., Kühn, I., Marion, G., Ohlemüller, R., Schymanski, S.J. & Singer, A. ( 2012 ) Biotic modifiers, environmental modulation and species distribution models. Journal of Biogeography, 39, 2179 – 2190.en_US
dc.identifier.citedreferenceLinder, H.P., Antonelli, A., Humphreys, A.M., Pirie, M.D. & Wüest, R.O. ( 2013 ) What determines biogeographical ranges? Historical wanderings and ecological constraints in the danthonioid grasses. Journal of Biogeography, 40, 821 – 834.en_US
dc.identifier.citedreferenceLoarie, S.R., Carter, B.E., Hayhoe, K., McMahon, S., Moe, R., Knight, C.A. & Ackerly, D.D. ( 2008 ) Climate change and the future of California's endemic flora. PLoS ONE, 3, e2502.en_US
dc.identifier.citedreferenceLoarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. & Ackerly, D.D. ( 2009 ) The velocity of climate change. Nature, 462, 1052 – 1055.en_US
dc.identifier.citedreferenceLosos, J.B. & Schluter, D. ( 2000 ) Analysis of an evolutionary species–area relationship. Nature, 408, 847 – 850.en_US
dc.identifier.citedreferenceMaddison, W.P., Midford, P.E. & Otto, S.P. ( 2007 ) Estimating a binary character's effect on speciation and extinction. Systematic Biology, 56, 701 – 710.en_US
dc.identifier.citedreferenceMahler, D.L., Revell, L.J., Glor, R.E. & Losos, J.B. ( 2010 ) Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antilles anoles. Evolution, 64, 2731 – 2745.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.