Show simple item record

Sensitivity of sediment geochemical proxies to coring location and corer type in a large lake: Implications for paleolimnological reconstruction

dc.contributor.authorLu, Yue Hanen_US
dc.contributor.authorMeyers, Philip A.en_US
dc.contributor.authorRobbins, John A.en_US
dc.contributor.authorEadie, Brian J.en_US
dc.contributor.authorHawley, Nathanen_US
dc.contributor.authorJi, Kang Hyeunen_US
dc.date.accessioned2014-07-03T14:41:35Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-07-03T14:41:35Z
dc.date.issued2014-05en_US
dc.identifier.citationLu, Yue Han; Meyers, Philip A.; Robbins, John A.; Eadie, Brian J.; Hawley, Nathan; Ji, Kang Hyeun (2014). "Sensitivity of sediment geochemical proxies to coring location and corer type in a large lake: Implications for paleolimnological reconstruction." Geochemistry, Geophysics, Geosystems 15(5): 1960-1976.en_US
dc.identifier.issn1525-2027en_US
dc.identifier.issn1525-2027en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107562
dc.description.abstractWe compared a suite of geochemical proxies in sediment cores collected in 1982, 1988, 1991, and 2003 from sites near the depocenter of Lake Erie to evaluate the reliability of paleoenvironmental reconstructions derived from lacustrine sediments. Our proxies included the concentrations and carbon isotopic compositions of organic and inorganic carbon (TOC, CaCO 3 , δ 13 C org , and δ 13 C CaCO3 ), augmented by organic C to total N ratios (C org :N tot ), δ 15 N, and carbonate δ 18 O values (δ 18 O CaCO3 ). The three coring sites were clustered within 12 km; two types of corers—a Box corer and a Benthos gravity corer—were used for the 1991 sampling campaign. The variance of most proxies was accounted for not only by temporal environmental changes but also by coring locations and corer type, indicating that sediment spatial heterogeneity and differences in sediment recovery due to the use of different corers also played a part in determining the geochemical compositions of these cores. The TOC, δ 13 C org , and δ 13 C CaCO3 values showed decadal temporal patterns that were consistent between the multiple sampling campaigns. In contrast, the δ 15 N, C org :N tot , CaCO 3 , and δ 18 O CaCO3 exhibited across‐core differences in their temporal variations, making it difficult to extract consistent environment information from different cores. Our findings suggest that in addition to temporal environmental changes, high‐resolution paleolimnological reconstruction is sensitive to many factors that could include spatial sediment heterogeneity, discontinuous sedimentation processes, bioturbation, sediment dating uncertainty, and artifacts associated with analytical and coring procedures. Therefore, multiple‐core sampling and analysis are important in reliably reconstructing environmental changes, particularly for large, heterogeneous lacustrine basins. Key Points Geochemical proxies in five sediment cores from Lake Erie were compared Geochemical record was sensitive to coring location and corer type Multiple cores are necessary for reliable paleolimnological reconstructionen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherPrentice Hallen_US
dc.subject.otherHigh‐Resolution Paleolimnological Recorden_US
dc.subject.otherLake Erieen_US
dc.subject.otherSedimenten_US
dc.subject.otherOrganic Carbonen_US
dc.subject.otherStable Carbon and Nitrogen Isotopesen_US
dc.subject.otherGeochemical Proxyen_US
dc.titleSensitivity of sediment geochemical proxies to coring location and corer type in a large lake: Implications for paleolimnological reconstructionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107562/1/ggge20455.pdf
dc.identifier.doi10.1002/2013GC004989en_US
dc.identifier.sourceGeochemistry, Geophysics, Geosystemsen_US
dc.identifier.citedreferenceNg'ang'a, P., M. W. Muchane, T. C. Johnson, and K. Sturgeon ( 1998 ), Comparison of isotopic records in abiogenic and biogenic calcite from Lake Turkana, Kenya, in Environmental Changes and Response in East African Lakes, edited by J. T. Lehman, Springer, Netherlands.en_US
dc.identifier.citedreferenceHambley, G. W., and S. F. Lamoureux ( 2006 ), Recent summer climate recorded in complex varved sediments, Nicolay Lake, Cornwall Island, Nunavut, Canada, J. Paleolimnol., 35, 629 – 640.en_US
dc.identifier.citedreferenceHartman, W. L. ( 1973 ), Effects of exploitation, environmental changes, and new species on the fish habitats and resources of Lake Erie, Tech. Rep. 22, U. S. Bur. of Sport Fisher. and Wildlife, Sandusky, Ohio.en_US
dc.identifier.citedreferenceHawley, N., and B. J. Eadie ( 2007 ), Observations of sediment transport in Lake Erie during the winter of 2004–2005, J. Great Lakes Res., 33 ( 4 ), 816 – 827.en_US
dc.identifier.citedreferenceHeaton, T. H. E. ( 1986 ), Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review, Chem. Geol., 59, 87 – 102.en_US
dc.identifier.citedreferenceHodell, D. A., and C. L. Schelske ( 1998 ), Production, sedimentation, and isotopic composition of organic matter in Lake Ontario, Limnol. Oceanogr., 43, 200 – 214.en_US
dc.identifier.citedreferenceHollander, D. J., J. A. Mackenzie, and H. L. ten Haven ( 1992 ), A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): Implications for the origin of organic‐carbon rich sediments, Geology, 20, 825 – 828.en_US
dc.identifier.citedreferenceJohnson, T. C., J. D. Van Alstine, K. R. Rolfhus, S. M. Colman, and N. J. Wattrus ( 2012 ), A high resolution study of spatial and temporal variability of natural and anthropogenic compounds in offshore Lake Superior sediments, J. Great Lakes Res., 38, 673 – 685.en_US
dc.identifier.citedreferenceJonsson, C. E., S. Andersson, G. C. Rosqvist, and M. J. Leng ( 2010 ), Reconstructing past atmospheric circulation changes using oxygen isotopes in lake sediments from Sweden, Clim. Past, 6 ( 1 ), 49 – 62, doi: 10.5194/Cp‐6‐49‐2010.en_US
dc.identifier.citedreferenceKrissek, L. A., and W. I. Ausich ( 1997 ), The Geological Setting of Lake Erie, Ohio Sea Grant Publ., Ohio State Univ., Columbus.en_US
dc.identifier.citedreferenceLeach, J. H. ( 1999 ), Lake Erie: Passages revisited, in State of Lake Ere: Past, Present and Future, edited by M. Munawar, T. Edsail, and I. F. Munawar, pp. 5 – 22, Backhuys, Leiden, Netherlands.en_US
dc.identifier.citedreferenceLi, H. C., T. L. Ku, L. D. Stott, and R. F. Anderson ( 1997 ), Stable isotope studies on Mono Lake (California). 1. δ 18 O in lake sediments as proxy for climatic change during the last 150 years, Limnol. Oceanogr., 42, 230 – 238.en_US
dc.identifier.citedreferenceLick, W., J. Lick, and C. K. Ziegler ( 1994 ), The resuspension and transport of fine‐grained sediments in lake Erie, J. Great Lakes Res., 20 ( 4 ), 599 – 612.en_US
dc.identifier.citedreferenceLu, Y. H., and P. A. Meyers ( 2009 ), Sediment lipid biomarkers as recorders of the contamination and cultural eutrophication of Lake Erie, 1909–2003, Org. Geochem., 40 ( 8 ), 912 – 921, doi: 10.1016/j.orggeochem.2009.04.012.en_US
dc.identifier.citedreferenceLu, Y. H., P. A. Meyers, B. J. Eadie, and J. A. Robbins ( 2010a ), Carbon cycling in Lake Erie during cultural eutrophication over the last century inferred from the stable carbon isotope composition of sediments, J. Paleolimnol., 43 ( 2 ), 261 – 272, doi: 10.1007/s10933‐009‐9330‐y.en_US
dc.identifier.citedreferenceLu, Y. H., P. A. Meyers, T. H. Johengen, B. J. Eadie, J. A. Robbins, and H. J. Han ( 2010b ), δ 15 N values in Lake Erie sediments as indicators of nitrogen biogeochemical dynamics during cultural eutrophication, Chem. Geol., 273 ( 1–2 ), 1 – 7, doi: 10.1016/j.chemgeo.2010.02.002.en_US
dc.identifier.citedreferenceLu, Y. H., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers, and R. Jaffé ( 2013 ), Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use, J. Geophys. Res. Biogeosci., 118, 566 – 580, doi: 10.1002/jgrg.20048.en_US
dc.identifier.citedreferenceLudsin, S. A., M. W. Kershner, K. A. Blocksom, R. L. Knight, and R. A. Stein ( 2001 ), Life after death in Lake Erie: Nutrient controls drive fish species richness, rehabilitation, Ecol. Appl., 11, 731 – 746.en_US
dc.identifier.citedreferenceMacIsaac, H. J. ( 1999 ), Biological invasions in Lake Erie: Past, present and future, in State of Lake Ere: Past, Present and Future, edited by M. Munawar, T. Edsail, and I. F. Munawar, pp. 305 – 322, Backhuys, Leiden, Netherlands.en_US
dc.identifier.citedreferenceMaier, D. B., J. Rydberg, C. Bigler, and I. Renberg ( 2013 ), Compaction of recent varved lake sediments, GFF, 135 ( 3–4 ), 231 – 236, doi: 10.1080/11035897.2013.788551.en_US
dc.identifier.citedreferenceMeyers, P. A. ( 1994 ), Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol., 114, 289 – 302.en_US
dc.identifier.citedreferenceMeyers, P. A., and R. Ishiwatari ( 1993 ), Lacustrine organic geochemistry—An overview of indicators of organic‐matter sources and diagenesis in lake‐sediments, Org. Geochem., 20, 867 – 900.en_US
dc.identifier.citedreferenceMills, E. L., G. Rosenberg, A. P. Spidle, M. Ludyanskiy, Y. Pligin, and B. May ( 1996 ), A review of the biology and ecology of the quagga mussel ( Dreissena bugensis ), a second species of freshwater dreissenid introduced to North America, Am. Zool., 36, 271 – 286.en_US
dc.identifier.citedreferenceMorton, R. A., and W. A. White ( 1997 ), Characteristics of and corrections for core shortening in unconsolidated sediments, J. Coastal Res., 13 ( 3 ), 761 – 769.en_US
dc.identifier.citedreferenceMüller, G., and M. Gastner ( 1971 ), The “Karbonate‐Bombe,” a simple device for the determination of the carbonate content in sediments, soils, and other materials, Neues Jahrb. Miner. Mh., 10, 466 – 469.en_US
dc.identifier.citedreferenceMunawar, M., T. Edsail, and I. F. Munawar ( 1999 ), State of Lake Erie: Past, Present and Future, Backhuys, Leiden, Netherlands.en_US
dc.identifier.citedreferenceZhang, C. J., S. Mischke, M. P. Zheng, A. Prokopenk, F. Q. Guo, and Z. D. Feng ( 2009 ), Carbon and oxygen isotopic composition of surface‐sediment carbonate in Bosten Lake (Xinjiang, China) and its controlling factors, Acta Geol. Sin., 83, 386 – 395.en_US
dc.identifier.citedreferenceOgrinc, N., R. Markovics, T. Kanduc, L. M. Walter, and S. K. Hamilton ( 2008 ), Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the River Danube, Appl. Geochem., 23, 3685 – 3698.en_US
dc.identifier.citedreferencePetterson, G., I. Renberg, P. Geladi, A. Lindberg, and F. Lindgren ( 1993 ), Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden, J. Paleolimnol., 9, 195 – 208.en_US
dc.identifier.citedreferenceQuinn, F. H. ( 1992 ), Hydraulic residence times for the Laurentian Great Lakes, J. Great Lakes Res., 18, 22 – 28.en_US
dc.identifier.citedreferenceRichards, R. P., and D. B. Baker ( 1993 ), Trends in nutrient and suspended sediment concentrations in Lake Erie tributaries, 1975–1990, J. Great Lakes Res., 19, 200 – 211.en_US
dc.identifier.citedreferenceRobbins, J. A. ( 1982 ), Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos, Hydrobiologia, 92, 611 – 622.en_US
dc.identifier.citedreferenceRobbins, J. A. ( 1985 ), Great Lakes regional fallout source functions, NOAA Tech. Memo. ERL GLERL‐56, Ann Arbor, Mich.en_US
dc.identifier.citedreferenceRobbins, J. A., T. Keilty, D. S. White, and D. N. Edgington ( 1989 ), Relationship among tubificd abundances, sediment composition, and accumulation rates in Lake Erie, Can. J. Fish. Aquat. Sci., 46 ( 2 ), 223 – 231, doi: 10.1139/f89‐031.en_US
dc.identifier.citedreferenceRobbins, J. A., C. Holmes, R. Halley, M. Bothner, E. Shinn, J. Graney, G. Keeler, M. tenBrink, K. A. Orlandini, and D. Rudnick ( 2000 ), Time‐averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay, J. Geophys. Res., 105, 28,805 – 28,821.en_US
dc.identifier.citedreferenceRockwell, D. C., G. J. Warren, P. E. Bertram, D. K. Salisbury, and N. M. Burns ( 2005 ), The US EPA Lake Erie indicators monitoring program 1983–2002: Trends in phosphorus, silica, and chlorophyll a in the central basin, J. Great Lakes Res., 31, 23 – 34.en_US
dc.identifier.citedreferenceRouth, J., P. A. Meyers, Ö. Gustafsson, M. Baskaran, R. Hallberg, and A. Scholdström ( 2004 ), Sedimentary geochemical characteristics of Lake Brunnsviken, Sweden: A record of human‐induced environmental changes in the watershed, Limnol. Oceanogr. Methods, 49, 1560 – 1569.en_US
dc.identifier.citedreferenceSchelske, C. L., and D. A. Hodell ( 1991 ), Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments, Limnol. Oceanogr., 36, 961 – 975.en_US
dc.identifier.citedreferenceSchelske, C. L., and D. A. Hodell ( 1995 ), Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie, Limnol. Oceanogr., 40, 918 – 929.en_US
dc.identifier.citedreferenceSchloesser, D. W., R. G. Stickel, and T. B. Bridgeman ( 2005 ), Potential oxygen demand of sediments from Lake Erie, J. Great Lakes Res., 31, 272 – 283.en_US
dc.identifier.citedreferenceSchloesser, D. W., J. A. Robbins, G. Matisoff, T. F. Nalepa, and N. R. Morehead ( 2014 ), A 200 year chronology of burrowing mayflies (Hexagenia spp.) in Saginaw Bay, J. Great Lakes Res., 40, 80 – 91.en_US
dc.identifier.citedreferenceStrong, A., and B. J. Eadie ( 1978 ), Satellite observations of calcium carbonate precipitation in the Great Lakes, Limnol. Oceanogr., 23, 877 – 887.en_US
dc.identifier.citedreferenceTalbot, M. R., N. B. Jenson, T. Lærdel, and M. L. Filippi ( 2006 ), Geochemical responses to a major transgression in giant African lakes, J. Paleolimnol., 35, 467 – 489.en_US
dc.identifier.citedreferenceTeranes, J. L., and S. M. Bernasconi ( 2005 ), Factors controlling δ 13 C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records, Limnol. Oceanogr. Methods, 50, 914 – 922.en_US
dc.identifier.citedreferenceVerburg, P. ( 2007 ), The need to correct for the Suess effect in the application of δ 13 C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene, J. Paleolimnol., 37, 591 – 602.en_US
dc.identifier.citedreferenceWu, J. L., C. M. Huang, H. Zeng, G. H. Schleser, and R. Battarbee ( 2007 ), Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu, China: Human impacts on a large shallow lake, J. Paleolimnol., 38, 13 – 23.en_US
dc.identifier.citedreferenceWu, Y., A. Lücke, and S. Wang ( 2008 ), Assessment of nutrient sources and paleoproductivity during the past century in Longgan Lake, middle reaches of the Yangtze River, China, J. Paleolimnol., 39, 451 – 462.en_US
dc.identifier.citedreferenceAltabet, M. A., and R. Francois ( 1994 ), Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cycles, 8, 103 – 116.en_US
dc.identifier.citedreferenceAltabet, M. A., R. Francois, D. W. Murray, and W. L. Prell ( 1995 ), Climate‐related variations in denitrification in the Arabian Sea from sediment N 15 /N 14 ratios, Nature, 373, 506 – 509.en_US
dc.identifier.citedreferenceBalascio, N. L., and R. S. Bradley ( 2012 ), Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems, J. Paleolimnol., 48, 259 – 273.en_US
dc.identifier.citedreferenceBerner, E. K., and R. A. Berner ( 1996 ), Global Environment: Water, Air, and Geochemical Cycles, Prentice Hall, Princeton, N. J.en_US
dc.identifier.citedreferenceBertram, P. E. ( 1993 ), Total phosphorus and dissolved‐oxygen trends in the central basin of Lake Erie, 1970–1991, J. Great Lakes Res., 19, 224 – 236.en_US
dc.identifier.citedreferenceBrodie, C. R., J. S. L. Casford, J. M. Lloyd, M. J. Leng, T. H. E. Heaton, C. P. Kendrick, and Y. Q. Zong ( 2011a ), Evidence for bias in C/N, delta C‐13 and delta N‐15 values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre‐analysis acid treatment methods, Quat. Sci. Rev., 30 ( 21–22 ), 3076 – 3087, doi: 10.1016/j.quascirev.2011.07.003.en_US
dc.identifier.citedreferenceBrodie, C. R., M. J. Leng, J. S. L. Casford, C. P. Kendrick, J. M. Lloyd, Y. Q. Zong, and M. I. Bird ( 2011b ), Evidence for bias in C and N concentrations and delta C‐13 composition of terrestrial and aquatic organic materials due to pre‐analysis acid preparation methods, Chem. Geol., 282 ( 3–4 ), 67 – 83, doi: 10.1016/j.chemgeo.2011.01.007.en_US
dc.identifier.citedreferenceBrodie, C. R., T. H. E. Heaton, M. J. Leng, C. P. Kendrick, J. S. L. Casford, and J. M. Lloyd ( 2011c ), Evidence for bias in measured delta N‐15 values of terrestrial and aquatic organic materials due to pre‐analysis acid treatment methods, Rapid Commun. Mass Spectrom., 25 ( 8 ), 1089 – 1099, doi: 10.1002/Rcm.4970.en_US
dc.identifier.citedreferenceBurns, N. M. (Ed.) ( 1985 ), Erie: The Lake That Survived, Rowman and Allanheld, Totowa, N. J.en_US
dc.identifier.citedreferenceBurns, N. M., D. C. Rockwell, P. E. Bertram, D. M. Dolan, and J. J. H. Ciborowski ( 2005 ), Trends in temperature, secchi depth, and dissolved oxygen depletion rates in the central basin of Lake Erie, 1983–2002, J. Great Lakes Res., 31, 35 – 49.en_US
dc.identifier.citedreferenceChu, G. Q., J. Q. Liu, D. Y. Gao, and Q. Sun ( 2006 ), Mechanism of varve formation and paleoenvironmental research at Lake Bolterskardet, Svalbard, the Arctic, Acta Geol. Sin., 80, 557 – 563.en_US
dc.identifier.citedreferenceCraig, H. ( 1965 ), Measurement of oxygen isotope paleotemperatures, in Stable Isotopes in Oceanographic Studies and Paleotemperatures, edited by E. Tongiori, pp. 161 – 182, Cons. Naz. Delle Ric., Spoleto, Italy.en_US
dc.identifier.citedreferenceDean, W. E. ( 1999 ), The carbon cycle and biogeochemical dynamics in lake sediments, J. Paleolimnol., 21, 375 – 393.en_US
dc.identifier.citedreferenceDe'ath, G., and K. E. Fabricius ( 2000 ), Classification and regression trees: A powerful yet simple technique for ecological data analysis, Ecology, 81, 3178 – 3192.en_US
dc.identifier.citedreferenceDunn ( 1979 ), Revised techniques for quantative calcium carbonate analysis using the “Karbonate‐Bombe,” and comparisons to other quantitative carbonate analysis method, J. Sediment. Petrol., 50, 631 – 637.en_US
dc.identifier.citedreferenceDusini, D. S. ( 2005 ), The effect of Lake Erie water level variations on sediment resuspension, MS thesis, Ohio State Univ., Columbus.en_US
dc.identifier.citedreferenceEadie, B. J., and J. A. Robbins ( 1987 ), The role of particulate matter in the movement of contaminants in the Great Lakes, Adv. Chem., 216, 319 – 364.en_US
dc.identifier.citedreferenceEpstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey ( 1953 ), Revised Carbonate‐water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315 – 1326, doi: 10.1130/0016‐7606(1953)64[1315:RCITS]2.0.CO;2.en_US
dc.identifier.citedreferenceEveritt, B. S., and T. Hothorn ( 2010 ), A Handbook of Statistical Analyses Using R, 2nd ed., Chapman and Hall, Boca Raton, Fla.en_US
dc.identifier.citedreferenceFaure, G., and T. M. Mensing ( 2005 ), Principles of Isotope Geology, 3rd ed., pp. 753 – 802, John Wiley, Hoboken, N. J.en_US
dc.identifier.citedreferenceFedotov, A. P., et al. ( 2008 ), A 450‐ka long record of glaciation in Northern Mongolia based on studies at Lake Khubsugul: High‐resolution reflection seismic data and grain‐size variations in cored sediments, J. Paleolimnol., 39, 335 – 348.en_US
dc.identifier.citedreferenceFinsinger, W., C. Belis, S. P. E. Blockley, U. Eicher, M. Leuenberger, A. F. Lotter, and B. Ammann ( 2008 ), Temporal patterns in lacustrine stable isotopes as evidence for climate change during the late glacial in the Southern European Alps, J. Paleolimnol., 40, 885 – 895.en_US
dc.identifier.citedreferenceFrancey, R. J., C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Leuenberger, R. L. Langenfelds, E. Michel, and L. P. Steele ( 1999 ), A 1000‐year high precision record of δ 13 C in atmospheric CO 2, Tellus, Ser. B, 51, 170 – 193.en_US
dc.identifier.citedreferenceGälman, V., J. Rydberg, S. S. de‐Luna, R. Bindler, and I. Renberg ( 2008 ), Carbon and nitrogen loss rates during aging of lake sediment: Changes over 27 years studied in varved lake sediment, Limnol. Oceanogr. Methods, 53 ( 3 ), 1076 – 1082.en_US
dc.identifier.citedreferenceGälman, V., J. Rydberg, and C. Bigler ( 2009 ), Decadal diagenetic effects on δ 13 C and δ 15 N studied in varved lake sediment, Limnol. Oceanogr. Methods, 54 ( 3 ), 917 – 924.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.