Show simple item record

Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields

dc.contributor.authorWang, Huien_US
dc.contributor.authorLühr, Hermannen_US
dc.contributor.authorShue, Jih‐hongen_US
dc.contributor.authorFrey, Harald. U.en_US
dc.contributor.authorKervalishvili, Guramen_US
dc.contributor.authorHuang, Taoen_US
dc.contributor.authorCao, Xueen_US
dc.contributor.authorPi, Gilberten_US
dc.contributor.authorRidley, Aaron J.en_US
dc.date.accessioned2014-07-03T14:41:36Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-07-03T14:41:36Z
dc.date.issued2014-05en_US
dc.identifier.citationWang, Hui; Lühr, Hermann ; Shue, Jih‐hong ; Frey, Harald. U.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron J. (2014). "Strong ionospheric fieldâ aligned currents for radial interplanetary magnetic fields." Journal of Geophysical Research: Space Physics 119(5): 3979-3995.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107563
dc.description.abstractThe present work has investigated the configuration of field‐aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high‐resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF B y and B z are weakly positive and B x keeps pointing to the Earth for almost 10 h. The geomagnetic indices D s t is about −40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10–20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m 2 , the plasma convection maintains two‐cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low‐level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region. Key Points A pair of strong FACs emerges with opposite polarity to DPY FACs Obvious sunward plasma flow channel persists during the period Enhanced air densities are found in the cusp regionen_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherField‐Aligned Currentsen_US
dc.subject.otherRadial Interplanetary Magnetic Fielden_US
dc.subject.otherAir Upwellingen_US
dc.titleStrong ionospheric field‐aligned currents for radial interplanetary magnetic fieldsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107563/1/jgra51028.pdf
dc.identifier.doi10.1002/2014JA019951en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRidley, A. J. ( 2005 ), A new formulation for the ionospheric cross polar cap potential including saturation effects, Ann. Geophys., 23, 3533 – 3547.en_US
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, and D. L. DeZeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584.en_US
dc.identifier.citedreferenceRobinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, and D. A. Hardy ( 1987 ), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92 ( A3 ), 2565 – 2569.en_US
dc.identifier.citedreferenceRussell, C. T., and M. Fleishman ( 2002 ), Joint control of region‐2 field‐aligned currents by the east‐west component of the interplanetary electric field and polar cap illumination, J. Atmos. Terr. Phys., 64, 1803 – 1808, doi: 10.1016/S1364‐6826(02)00189‐X.en_US
dc.identifier.citedreferenceRussell, C. T., S. M. Petrinec, T. L. Zhang, P. Song, and H. Kawano ( 1997 ), The effect of foreshock on the motion of the dayside magnetopause, Geophys. Res. Lett., 24, 1439 – 1441, doi: 10.1029/97GL01408.en_US
dc.identifier.citedreferenceShue, J.‐H., P. T. Newell, K. Liou, C.‐I. Meng, and S. W. H. Cowley ( 2002 ), Interplanetary magnetic field B x asymmetry effect on auroral brightness, J. Geophys. Res., 107 ( A8 ), 1197, doi: 10.1029/2001JA000229.en_US
dc.identifier.citedreferenceShue, J.‐H., J.‐K. Chao, P. Song, J. P. McFadden, A. Suvorova, V. Angelopoulos, K. H. Glassmeier, and F. Plaschke ( 2009 ), Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, doi: 10.1029/2009GL039842.en_US
dc.identifier.citedreferenceStauning, P. ( 2002 ), Field‐aligned ionospheric current systems observed from Magsat and Oersted satellites during northward IMF, Geophys. Res. Lett., 29 ( 15 ), 8005, doi: 10.1029/2001GL013961.en_US
dc.identifier.citedreferenceStrangeway, R. J., C. T. Russell, C. W. Carlson, J. P. McFadden, R. E. Ergun, M. Temerin, D. M. Klumpar, W. K. Peterson, and T. E. Moore ( 2000 ), Cusp field‐aligned currents and ion outflows, J. Geophys. Res., 105, 21,129 – 21,141, doi: 10.1029/2000JA900032.en_US
dc.identifier.citedreferenceStrangeway, R. J., R. E. Ergun, Y.‐J. Su, C. W. Carlson, and R. C. Elphic ( 2005 ), Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi: 10.1029/2004JA010829.en_US
dc.identifier.citedreferenceSuvorova, A. V., J.‐H. Shue, A. V. Dmitriev, D. G. Sibeck, J. P. McFadden, H. Hasegawa, K. Ackerson, K. Jelínek, J. Šafránková, and Z. Němeček ( 2010 ), Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi: 10.1029/2010JA015404.en_US
dc.identifier.citedreferenceTaguchi, S., M. Sugiura, J. D. Winningham, and J. A. Slavin ( 1993 ), Characterization of the IMF By‐dependent field‐aligned currents in the cleft region based on DE 2 observations, J. Geophys. Res., 98, 1393 – 1407.en_US
dc.identifier.citedreferenceTang, B. B., C. Wang, and W. Y. Li ( 2013 ), The magnetosphere under the radial interplanetary magnetic field: A numerical study, J. Geophys. Res. Space Physics, 118, 7674 – 7682, doi: 10.1002/2013JA019155.en_US
dc.identifier.citedreferenceVerigin, M., G. Kotova, A. Szabo, J. Slavin, T. Gombosi, K. Kabin, F. Shugaev, and A. Kalinchenko ( 2001 ), Wind observations of the terrestrial bow shock: 3‐D shape and motion, Earth Planets Space, 53, 1001 – 1009.en_US
dc.identifier.citedreferenceWang, H., H. Lühr, and S. Y. Ma ( 2005 ), Solar zenith angle and merging electric field control of field‐aligned currents: A statistical study of the Southern Hemisphere, J. Geophys. Res., 110, A03306, doi: 10.1029/2004JA010530.en_US
dc.identifier.citedreferenceWang, H., H. Lühr, S. Y. Ma, J. Weygand, and R. M. Skoug ( 2006 ), Field‐aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events, Ann. Geophys., 24, 311 – 324.en_US
dc.identifier.citedreferenceWang, H., A. J. Ridley, and H. Lühr ( 2008a ), SWMF simulation of field‐aligned currents for a varying northward and duskward IMF with nonzero dipole tilt, Ann. Geophys., 26, 1461 – 1477, doi: 10.5194/angeo‐26‐1461‐2008.en_US
dc.identifier.citedreferenceWang, H., A. J. Ridley, H. Lühr, M. W. Liemohn, and S. Y. Ma ( 2008b ), Statistical study of the subauroral polarization stream: Its dependence on the cross‐polar cap potential and subauroral conductance, J. Geophys. Res., 113, A12311, doi: 10.1029/2008JA013529.en_US
dc.identifier.citedreferenceWatanabe, M., T. Iijima, and F. J. Rich ( 1996 ), Synthesis models of dayside field‐aligned currents for strong interplanetary magnetic field By, J. Geophys. Res., 101, 13,303 – 13,320, doi: 10.1029/96JA00482.en_US
dc.identifier.citedreferenceWatari, S., M. Vandas, and T. Watanabe ( 2005 ), Solar cycle variation of long‐duration radial interplanetary magnetic field events at 1 AU, J. Geophys. Res., 110, A12102, doi: 10.1029/2005JA011165.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2001 ), Maps of ionospheric field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data, J. Geophys. Res., 106, 12,889 – 12,902, doi: 10.1029/2000JA000295.en_US
dc.identifier.citedreferenceWilder, F. D., S. Eriksson, H. Korth, J. B. H. Baker, M. R. Hairston, C. Heinselman, and B. J. Anderson ( 2013 ), Field‐aligned current reconfiguration and magnetospheric response to an impulse in the interplanetary magnetic field B Y component, Geophys. Res. Lett., 40, 2489 – 2494, doi: 10.1002/grl.50505.en_US
dc.identifier.citedreferenceWilhjelm, J. E., E. Friis‐Christensen, and T. A. Potemra ( 1978 ), The relationship between ionospheric and field‐aligned currents in the dayside cusp, J. Geophys. Res., 83, 5586 – 5592.en_US
dc.identifier.citedreferenceWing, S., S.‐I. Ohtani, P. T. Newell, T. Higuchi, G. Ueno, and J. M. Weygand ( 2010 ), Dayside field‐aligned current source regions, J. Geophys. Res., 115, A12215, doi: 10.1029/2010JA015837.en_US
dc.identifier.citedreferenceXu, D., and M. G. Kivelson ( 1994 ), Polar cap field‐aligned currents for southward interplanetary magnetic fields, J. Geophys. Res., 99, 6067 – 6078, doi: 10.1029/93JA02697.en_US
dc.identifier.citedreferenceYamauchi, M., R. Lundin, and J. Woch ( 1993 ), The interplanetary magnetic field By effects on large‐scale field‐aligned currents near local noon—Contributions from cusp part and noncusp part, J. Geophys. Res., 98, 5761 – 5767.en_US
dc.identifier.citedreferenceYang, Y. F., J. Y. Lu, J.‐S. Wang, Z. Peng, and L. Zhou ( 2013 ), Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions, J. Geophys. Res. Space Physics, 118, 209 – 217, doi: 10.1029/2012JA017727.en_US
dc.identifier.citedreferenceLi, W., D. Knipp, J. Lei, and J. Raeder ( 2011 ), The relation between dayside local Poynting flux enhancement and cusp reconnection, J. Geophys. Res., 116, A08301, doi: 10.1029/2011JA016566.en_US
dc.identifier.citedreferenceLin, Y., and X. Y. Wang ( 2005 ), Three‐dimensional global hybrid simulation of dayside dynamics associated with the quasi‐parallel bow shock, J. Geophys. Res., 110, A12216, doi: 10.1029/2005JA011243.en_US
dc.identifier.citedreferenceEriksson, S., M. R. Hairston, F. J. Rich, H. Korth, Y. Zhang, and B. J. Anderson ( 2009 ), High‐latitude ionosphere convection and Birkeland current response for the 15 May 2005 magnetic storm recovery phase, J. Geophys. Res., 113, A00A08, doi: 10.1029/2008JA013139.en_US
dc.identifier.citedreferenceErlandson, R. R., L. J. Zanetti, T. A. Potemra, P. F. Bythrow, and R. Lundin ( 1988 ), IMF By dependence of region 1 Birkeland currents near noon, J. Geophys. Res., 93, 9804 – 9814.en_US
dc.identifier.citedreferenceFairfield, D. H., W. Baumjohann, G. Paschmann, H. Luehr, and D. G. Sibeck ( 1990 ), Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773 – 3786, doi: 10.1029/JA095iA04p03773.en_US
dc.identifier.citedreferenceFarrugia, C. J., A. Grocott, P. E. Sandholt, S. W. H. Cowley, Y. Miyoshi, F. J. Rich, V. K. Jordanova, R. B. Torbert, and A. Sharma ( 2007 ), The magnetosphere under weak solar wind forcing, Ann. Geophys., 25, 191 – 205, doi: 10.5194/angeo‐25‐191‐2007.en_US
dc.identifier.citedreferenceFarrugia, C. J., et al. ( 2010 ), Magnetosheath for almost‐aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X = −12 Re, J. Geophys. Res., 115, A08227, doi: 10.1029/2009JA015128.en_US
dc.identifier.citedreferenceFeldshtein, I. I., and A. E. Levitin ( 1986 ), Solar wind control of electric fields and currents in the ionosphere, J. Geomagn. Geoelec., 38, 1143 – 1182.en_US
dc.identifier.citedreferenceFontheim, E. G., L. H. Brace, and J. D. Winningham ( 1987 ), Properties of low‐energy electron precipitation in the cleft during periods of unusually high ambient electron temperatures, J. Geophys. Res., 92, 12,267 – 12,273, doi: 10.1029/JA092iA11p12267.en_US
dc.identifier.citedreferenceFriis‐Christensen, E., Y. Kamide, A. D. Richmond, and S. Matsushita ( 1985 ), Interplanetary magnetic field control of high‐latitude electric fields and currents determined from Greenland magnetometer data, J. Geophys. Res., 90, 1325 – 1338.en_US
dc.identifier.citedreferenceFujii, R., and T. Iijima ( 1987 ), Control of the ionospheric conductivities on large‐scale Birkeland current intensities under geomagnetic quiet conditions, J. Geophys. Res., 92, 4505 – 4513, doi: 10.1029/JA092iA05p04505.en_US
dc.identifier.citedreferenceFujii, R., H. Fukunishi, S. Kokubun, M. Sugiura, F. Tohyama, H. Hayakawa, K. Tsuruda, and T. Okada ( 1992 ), Field‐aligned current signatures during the March 13–14, 1989, great magnetic storm, J. Geophys. Res., 97, 10,703 – 10,715, doi: 10.1029/92JA00171.en_US
dc.identifier.citedreferenceGjerloev, J. W., S. Ohtani, T. Iijima, B. Anderson, J. Slavin, and G. Le ( 2011 ), Characteristics of the terrestrial field‐aligned current system, Ann. Geophys., 29, 1713 – 1729, doi: 10.5194/angeo‐29‐1713‐2011.en_US
dc.identifier.citedreferenceGreen, D. L., C. L. Waters, B. J. Anderson, and H. Korth ( 2009 ), Seasonal and interplanetary magnetic field dependence of the field‐aligned currents for both Northern and Southern Hemispheres, Ann. Geophys., 27, 1701 – 1715, doi: 10.5194/angeo‐27‐1701‐2009.en_US
dc.identifier.citedreferenceHaraguchi, K., H. Kawano, K. Yumoto, S. Ohtani, T. Higuchi, and G. Ueno ( 2004 ), Ionospheric conductivity dependence of dayside region 0, 1, and 2 field aligned current systems, Ann. Geophys., 22, 2775 – 2783.en_US
dc.identifier.citedreferenceHardy, D. A., L. K. Schmitt, M. S. Gussenhoven, F. J. Marshall, and H. C. Yeh ( 1984 ), Precipitating electron and ion detectors (SSJ/4) for the block 5D/Flights 6‐10 DMSP (Defense Meteorological Satellite Program) satellites: Calibration and data presentation, Rep.AFGL‐TR‐84‐0314, Air Force Geophys. Lab., Air Force Base, Mass.en_US
dc.identifier.citedreferenceHe, M., J. Vogt, H. Lühr, E. Sorbalo, A. Blagau, G. Le, and G. Lu ( 2012 ), A high‐resolution model of field‐aligned currents through empirical orthogonal functions analysis (MFACE), Geophys. Res. Lett., 39, L18105, doi: 10.1029/2012GL053168.en_US
dc.identifier.citedreferenceHeelis, R. A., J. D. Winningham, M. Sugiura, and N. C. Maynard ( 1984 ), Particle acceleration parallel and perpendicular to the magnetic field observed by DE‐2, J. Geophys. Res., 89, 3893 – 3902, doi: 10.1029/JA089iA06p03893.en_US
dc.identifier.citedreferenceHietala, H., T. V. Laitinen, R. Vainio, A. Vaivads, M. Palmroth, T. I. Pulkkinen, H. E. J. Koskinen, E. A. Lucek, and H. Reme ( 2009 ), Supermagnetosonic jets behind a collisionless quasiparallel shock, Phys. Rev. Lett., 103, 245001.en_US
dc.identifier.citedreferenceHietala, H., N. Partamies, T. V. Laitinen, L. B. N. Clausen, G. Facskó, A. Vaivads, H. E. J. Koskinen, I. Dandouras, H. Réme, and E. A. Lucek ( 2012 ), Supermagnetosonic subsolar magnetosheath jets and their effects: From the solar wind to the ionospheric convection, Ann. Geophys., 30, 33 – 48, doi: 10.5194/angeo‐30‐33‐2012.en_US
dc.identifier.citedreferenceHolzworth, R. H., and C.‐I. Meng ( 1975 ), Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377 – 380, doi: 10.1029/GL002i009p00377.en_US
dc.identifier.citedreferenceIijima, T., and T. Potemra ( 1976 ), Field‐aligned currents in the dayside cusp observed by Triad, J. Geophys. Res., 81, 5971 – 5979.en_US
dc.identifier.citedreferenceIijima, T., T. A. Potemra, L. J. Zanetti, and P. F. Bythrow ( 1984 ), Large‐scale Birke‐land currents in the dayside polar region during strongly northward IMF: Anew Birkeland current system, J. Geophys. Res., 89, 7441 – 7452.en_US
dc.identifier.citedreferenceJuusola, L., K. Kauristie, O. Amm, and P. Ritter ( 2009 ), Statistical dependence of auroral ionospheric currents on solar wind and geomagnetic parameters from 5 years of CHAMP satellite data, Ann. Geophys., 27, 1005 – 1017, doi: 10.5194/angeo‐27‐1005‐2009.en_US
dc.identifier.citedreferenceKan, J. R., and L. C. Lee ( 1979 ), Energy coupling function and solar wind‐magnetosphere dynamo, Geophys. Res. Lett., 6, 577 – 580.en_US
dc.identifier.citedreferenceKervalishvili, G. N., and H. Lühr ( 2014 ), Climatology of zonal wind and large‐scale FAC with respect to the density anomaly in the cusp region: Seasonal, solar cycle, and IMF By dependence, Ann. Geophys., 32, 249 – 261, doi: 10.5194/angeo‐32‐249‐2014.en_US
dc.identifier.citedreferenceKnipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake ( 2011 ), Extreme Poynting flux in the dayside thermosphere: Examples and statistics, Geophys. Res. Lett., 38, L16102, doi: 10.1029/2011GL048302.en_US
dc.identifier.citedreferenceLavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind‐magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.en_US
dc.identifier.citedreferenceAmata, E., S. P. Savin, D. Ambrosino, Y. V. Bogdanova, M. F. Marcucci, S. Romanov, and A. Skalsky ( 2011 ), High kinetic energy density jets in the Earth's magnetosheath: A case study, Planet. Space Sci., 59, 482 – 494, doi: 10.1016/j.pss.2010.07.021.en_US
dc.identifier.citedreferenceAnderson, B. J., K. Takahashi, T. Kamei, C. L. Waters, and B. A. Toth ( 2002 ), Birkeland current system key parameters derived from Iridium observations: Method and initial validation results, J. Geophys. Res., 107 ( A6 ), 1079, doi: 10.1029/2001JA000080.en_US
dc.identifier.citedreferenceBythrow, P. F., T. A. Potemra, and L. J. Zanetti ( 1984 ), Variation of the auroral Birkeland and current pattern associated with the north‐south component of the IMF, in Magnetospheric Currents, pp. 131 – 136, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceCarlson, H. C., T. Spain, A. Aruliah, A. Skjaeveland, and J. Moen ( 2012 ), First‐principles physics of cusp/polar cap thermospheric disturbances, Geophys. Res. Lett., 39, L19103, doi: 10.1029/2012GL053034.en_US
dc.identifier.citedreferenceCassak, P. A. ( 2011 ), Theory and simulations of the scaling of magnetic reconnection with symmetric shear flow, Phys. Plasmas, 18 ( 7 ), 072106, doi: 10.1063/1.3602859.en_US
dc.identifier.citedreferenceCattell, C., J. Dombeck, W. Peria, R. Strangeway, R. Elphic, and C. Carlson ( 2003 ), Fast Auroral Snapshot observations of the dependence of dayside auroral field‐aligned currents on solar wind parameters and solar illumination, J. Geophys. Res., 108 ( A3 ), 1112, doi: 10.1029/2001JA000321.en_US
dc.identifier.citedreferenceClauer, C. R., and E. Friis‐Christensen ( 1988 ), High‐latitude dayside electric fields and currents during strong northward interplanetary magnetic field—Observations and model simulation, J. Geophys. Res., 93, 2749 – 2757.en_US
dc.identifier.citedreferenceCowley, S. W. H. ( 1981 ), Asymmetry effects associated with the X‐component of the IMF in a magnetically open magnetosphere, Planet. Space Sci., 29, 809 – 818, doi: 10.1016/0032‐0633(81)90071‐4.en_US
dc.identifier.citedreferenceCrooker, N. U. ( 1979 ), Dayside merging and cusp geometry, J. Geophys. Res., 84, 951 – 959, doi: 10.1029/JA084iA03p00951.en_US
dc.identifier.citedreferenceCrooker, N. U. ( 1988 ), Mapping the merging potential from the magnetopause to the ionosphere through the dayside cusp, J. Geophys. Res., 93, 7338 – 7344.en_US
dc.identifier.citedreferenceCrowley, G., D. J. Knipp, K. A. Drake, J. Lei, E. Sutton, and H. Lühr ( 2010 ), Thermospheric density enhancements in the dayside cusp region during strong B Y conditions, Geophys. Res. Lett., 37, L07110, doi: 10.1029/2009GL042143.en_US
dc.identifier.citedreferenceDeng, Y., T. J. Fuller‐Rowell, A. J. Ridley, D. Knipp, and R. E. Lopez ( 2013 ), Theoretical study: Influence of different energy sources on the cusp neutral density enhancement, J. Geophys. Res. Space Physics, 118, 2340 – 2349, doi: 10.1002/jgra.50197.en_US
dc.identifier.citedreferenceDmitriev, A. V., J. K. Chao, and D. J. Wu ( 2003 ), Comparative study of bow shock models using Wind and Geotail observations, J. Geophys. Res., 108 ( A12 ), 1464, doi: 10.1029/2003JA010027.en_US
dc.identifier.citedreferenceDoornbos, E. v. d. I., H. Lühr, M. Förster, and G. Koppenwallner ( 2010 ), Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites, J. Spacecr. Rock., 47, 580 – 589, doi: 10.2514/1.48114.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1963 ), The structure of the exosphere or adventures in velocity space, in Geophysics, The Earth's Environment, edited by C. DeWitt, J. Hieblot, and A. Lebeau, Gordon and Breach, New York.en_US
dc.identifier.citedreferenceEriksson, S., and L. Rastätter ( 2013 ), Alfvén Mach number and IMF clock angle dependencies of sunward flow channels in the magnetosphere, Geophys. Res. Lett., 40, 1257 – 1262, doi: 10.1002/grl.50307.en_US
dc.identifier.citedreferenceLu, G., L. R. Lyons, P. H. Reiff, W. F. Denig, O. de la Beaujardiere, H. W. Kroehl, P. T. Newell, F. J. Rich, H. Opgenoorth, and M. A. L. Persson ( 1995a ), Characteristics of ionospheric convection and field‐aligned current in the dayside cusp region, J. Geophys. Res., 100, 11,845 – 11,861, doi: 10.1029/94JA02665.en_US
dc.identifier.citedreferenceLu, G., A. D. Richmond, B. A. Emery, and R. G. Roble ( 1995b ), Magnetosphere‐ionosphree‐thermosphere coupling: Effect of neutral winds on energy transfer and field‐aligned current, J. Geophys. Res., 100, 19,643 – 19,659, doi: 10.1029/95JA00766.en_US
dc.identifier.citedreferenceLühr, H., J. Warnecke, and M. K. A. Rother ( 1996 ), An algorithm for estimating field‐aligned currents from single spacecraft magnetic field measurements: A diagnostic tool applied to Freja satellite data, IEEE Trans. Geosci. Remote Sens., 34, 1369 – 1376.en_US
dc.identifier.citedreferenceLühr, H., M. Rotter, W. Köhler, P. Ritter, and L. Grunwaldt ( 2004 ), Thermospheric up‐welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.en_US
dc.identifier.citedreferenceMcDiarmid, I. B., J. R. Burrows, and M. D. Wilson ( 1979 ), Large‐scale magnetic field perturbations and particle measurements at 1400 km on the dayside, J. Geophys. Res., 84, 1431 – 1441.en_US
dc.identifier.citedreferenceMei, Y., N. U. Crooker, and G. L. Siscoe ( 1994 ), Cusp current modeling: A systematic approach, J. Geophys. Res., 99, 4027 – 4038.en_US
dc.identifier.citedreferenceMerka, J., A. Szabo, J. Šafránková, and Z. Němeček ( 2003 ), Earth's bow shock and magnetopause in the case of a field‐aligned upstream flow: Observation and model comparison, J. Geophys. Res., 108 ( A7 ), 1269, doi: 10.1029/2002JA009697.en_US
dc.identifier.citedreferenceNenovski, P. ( 2009 ), Comparison of simulated and observed large‐scale, field‐aligned current structures, Ann. Geophys., 26, 281 – 293.en_US
dc.identifier.citedreferenceNeugebauer, M., and R. Goldstein ( 1997 ), Particle and field signatures of coronal mass ejections in the solar wind, in Coronal Mass Ejections, Geophys. Monogr. Ser., vol. 99, edited by N. Crooker, J. A. Joselyn, and J. Feynman, pp. 245 – 251, AGU, Washington D. C. doi: 10.1029/GM099p0245.en_US
dc.identifier.citedreferenceNěmeček, Z., J. Šafránková, L. Přech, D. G. Sibeck, S. Kokubun, and T. Mukai ( 1998 ), Transient flux enhancements in the magnetosheath, Geophys. Res. Lett., 25, 1273 – 1276, doi: 10.1029/98GL50873.en_US
dc.identifier.citedreferenceOmidi, N., D. G. Sibeck, and X. Blanco‐Cano ( 2009 ), Foreshock compressional boundary, J. Geophys. Res., 114, A08205, doi: 10.1029/2008JA013950.en_US
dc.identifier.citedreferencePapitashvili, V. O., and F. J. Rich ( 2002 ), High‐latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res., 107 ( A8 ), SIA 17‐1 – SIA 17‐13, doi: 10.1029/2001JA000264.en_US
dc.identifier.citedreferenceParker, E. N. ( 1958 ), Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664, doi: 10.1086/146579.en_US
dc.identifier.citedreferencePotemra, T. A., L. J. Zanetti, R. E. Erlandson, P. F. Bythrow, G. Gustafsson, and M. H. Acuna ( 1987 ), Observations of large‐scale Birkeland currents with Viking, Geophys. Res. Lett., 14, 419 – 422.en_US
dc.identifier.citedreferenceReiff, P. H., and J. L. Burch ( 1985 ), IMF B y ‐dependent plasma flow and birkland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF, J. Geophys. Res., 90, 1595 – 1609.en_US
dc.identifier.citedreferenceReigber, C., H. Lühr, and P. Schwintzer ( 2002 ), CHAMP mission status, Adv. Space Res., 30, 129 – 134.en_US
dc.identifier.citedreferenceRich, F. J., and M. Hairston ( 1994 ), Large‐scale convection patterns observed by DMSP, J. Geophys. Res., 99, 3827 – 3844.en_US
dc.identifier.citedreferenceRichmond, A. D. ( 1995 ), Ionospheric electrodynamics using magnetic Apex coordinates, J. Geophys. Res., 47, 191 – 212.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.