Show simple item record

TCIRG1 ‐Associated Congenital Neutropenia

dc.contributor.authorMakaryan, Vahagnen_US
dc.contributor.authorRosenthal, Elisabeth A.en_US
dc.contributor.authorBolyard, Audrey Annaen_US
dc.contributor.authorKelley, Merideth L.en_US
dc.contributor.authorBelow, Jennifer E.en_US
dc.contributor.authorBamshad, Michael J.en_US
dc.contributor.authorBofferding, Kathryn M.en_US
dc.contributor.authorSmith, Joshua D.en_US
dc.contributor.authorBuckingham, Katien_US
dc.contributor.authorBoxer, Laurence A.en_US
dc.contributor.authorSkokowa, Juliaen_US
dc.contributor.authorWelte, Karlen_US
dc.contributor.authorNickerson, Deborah A.en_US
dc.contributor.authorJarvik, Gail P.en_US
dc.contributor.authorDale, David C.en_US
dc.date.accessioned2014-07-03T14:41:36Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:36Z
dc.date.issued2014-07en_US
dc.identifier.citationMakaryan, Vahagn; Rosenthal, Elisabeth A.; Bolyard, Audrey Anna; Kelley, Merideth L.; Below, Jennifer E.; Bamshad, Michael J.; Bofferding, Kathryn M.; Smith, Joshua D.; Buckingham, Kati; Boxer, Laurence A.; Skokowa, Julia; Welte, Karl; Nickerson, Deborah A.; Jarvik, Gail P.; Dale, David C. (2014). " TCIRG1 ‐Associated Congenital Neutropenia." Human Mutation 35(7): 824-827.en_US
dc.identifier.issn1059-7794en_US
dc.identifier.issn1098-1004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107566
dc.description.abstractSevere congenital neutropenia (SCN) is a rare hematopoietic disorder, with estimated incidence of 1 in 200,000 individuals of European descent, many cases of which are inherited in an autosomal dominant pattern. Despite the fact that several causal genes have been identified, the genetic basis for >30% of cases remains unknown. We report a five‐generation family segregating a novel single nucleotide variant (SNV) in TCIRG1 . There is perfect cosegregation of the SNV with congenital neutropenia in this family; all 11 affected, but none of the unaffected, individuals carry this novel SNV. Western blot analysis show reduced levels of TCIRG1 protein in affected individuals, compared to healthy controls. Two unrelated patients with SCN, identified by independent investigators, are heterozygous for different, rare, highly conserved, coding variants in TCIRG1 . Model of VATPase showing that TClRGl protein is it's largest component. Homozygous mutations of TClRGl are a known cause of osteopetrosis. Heterozygous mutation of p.Arg736Ser in TClRGl is now associated with congenital neutropenia, presumable by impairing the differentiation or maturation or myeloid cells in the bone marrow.en_US
dc.publisherNational Center for Biotechnology Informationen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherV‐ATPaseen_US
dc.subject.otherTCIRG1en_US
dc.subject.otherCongenital Neutropeniaen_US
dc.subject.otherSCNen_US
dc.titleTCIRG1 ‐Associated Congenital Neutropeniaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107566/1/humu22563-sup-0001-figure.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107566/2/humu22563.pdf
dc.identifier.doi10.1002/humu.22563en_US
dc.identifier.sourceHuman Mutationen_US
dc.identifier.citedreferenceBoztug K, Klein C. 2009. Novel genetic etiologies of severe congenital neutropenia. Curr Opin Immunol 21: 472 – 480.en_US
dc.identifier.citedreferenceCalvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841 – 846.en_US
dc.identifier.citedreferenceYao G, Feng H, Cai Y, Qi W, Kong K. 2007. Characterization of vacuolar‐ATPase and selective inhibition of vacuolar‐H(+)‐ATPase in osteoclasts. Biochem Biophys Res Commun 357: 821 – 827.en_US
dc.identifier.citedreferenceXia J, Bolyard AA, Rodger E, Stein S, Aprikyan AA, Dale DC, Link DC. 2009. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol 147: 535 – 542.en_US
dc.identifier.citedreferenceWaters PJ. 2001. Degradation of mutant proteins, underlying “loss of function” phenotypes, plays a major role in genetic disease. Curr Issues Mol Biol 3: 57 – 65.en_US
dc.identifier.citedreferenceUtku N, Heinemann T, Tulius SG, Bulwin GC, Beinke S, Blumberg RS, Beato F, Randall J, Kojima R, Busconi L, Robertson ES, Schülein R, et al. 1998. Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 9: 509 – 518.en_US
dc.identifier.citedreferenceSusani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A, Frattini A, Pagani, F. 2004. TCIRG1‐dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by snRNA. Hum Mutat 24: 225 – 235.en_US
dc.identifier.citedreferenceSobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul‐Hirji R, Baric I, Canham N, Chitayat D, Dupuis‐Girod S, Ellis I, et al. 2001. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10: 1767 – 1773.en_US
dc.identifier.citedreferenceDale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, Boxer LA, Kannourakis G, Zeidler C, Welte K, Benson KF, Horwitz M. 2000. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96: 2317 – 2322.en_US
dc.identifier.citedreferenceCarlsson G, Fasth A. 2001. Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original “Kostmann family” and a review. Acta Paediatr 90: 757 – 764.en_US
dc.identifier.citedreferenceAdzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7: 248 – 249.en_US
dc.identifier.citedreferenceBrowning BL, Browning SR. 2011. A fast, powerful method for detecting identity by descent. Am J Hum Genet 88: 173 – 182.en_US
dc.identifier.citedreferenceZhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL. 2002. Osteoblast‐specific knockout of the insulin‐like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277: 44005 – 44012.en_US
dc.identifier.citedreferenceSmirnova AS, Morgun A, Shulzhenko N, Silva I, Gerbase‐DeLima G. 2005. Identification of new alternative spice events in the TCIRG1 gene in different human tissues. Biochem Biophys Res Commun 330: 943 – 949.en_US
dc.identifier.citedreferenceSiepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034 – 1050.en_US
dc.identifier.citedreferencePontius JU, Wagner L, Schuler GD. 2003. UniGene: a unified view of the transcriptome. In: McEntyre J, Ostell J, editors. The NCBI handbook. Bethesda: National Center for Biotechnology Information. p 1 – 11.en_US
dc.identifier.citedreferenceOchotny N, Flenniken AM, Owen C, Voronov I, Zirngibl RA, Osborne LR, Henderson JE, Adamson SL, Rossant J, Manolson MF, Aubin JE. 2011. The V‐ATPase a3 subunit mutation R740S is dominant negative and results in osteopetrosis in mice. J Bone Miner Res 26: 1484 – 1493.en_US
dc.identifier.citedreferenceNanda A, Brumell JH, Nordström T, Kjeldsen L, Sengelov H, Borregaard N, Rotstein OD, Grinstein S. 1996. Activation of proton pumping in human neutrophils occurs by exocytosis of vesicles bearing vacuolar‐type H+‐ATPases. J Biol Chem 271: 15963 – 15970.en_US
dc.identifier.citedreferenceMeusser B, Hirsch C, Jarosch E, Sommer T. 2005. ERAD: the long road to destruction. Nat Cell Biol 7: 766 – 772.en_US
dc.identifier.citedreferenceKostmann R. 1956. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl 45 ( Suppl 105 ): 1 – 78.en_US
dc.identifier.citedreferenceKollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T. 2006. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12: 657 – 664.en_US
dc.identifier.citedreferenceKlein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA, Rathinam C, Boztug K, Schwinzer B, Rezaei N, Bohn G, Melin M, et al. 2007. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39: 86 – 92.en_US
dc.identifier.citedreferenceKawasaki‐Nishi S, Nishi T, Forgac M. 2001. Arg‐735 of the 100‐kDa subunit a of the yeast V‐ATPase is essential for proton translocation. Proc Natl Acad Sci USA 98: 12397 – 12402.en_US
dc.identifier.citedreferenceJiang H, Chen W, Zhu G, Zhang L, Tucker B, Hao L, Feng S, Ci H, Ma J, Wang L, Stashenko P, Li YP. 2013. RNAi‐mediated silencing of Atp6i and Atp6i haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS One 8: e58599.en_US
dc.identifier.citedreferenceHorwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. 1999. Mutations in ELA2, encoding neutrophil elastase, define a 21‐day biological clock in cyclic haematopoiesis. Nat Genetics 23: 433 – 436.en_US
dc.identifier.citedreferenceHinton A, Bond S, Forgac M. 2009. ATPase functions in normal and disease processes. Pflugers Arch 457: 589 – 598.en_US
dc.identifier.citedreferenceHeinemann T, Bulwin GC, Randall J, Schneiders B, Sandoff K, Volk HD, Milford E, Gullans SR, Utku N. 1999. Genomic organization of the gene coding for TIRC7, a novel membrane protein essential for T‐Cell activation. Genomics 57: 398 – 406.en_US
dc.identifier.citedreferenceFrattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, et al. 2000. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25: 343 – 346.en_US
dc.identifier.citedreferenceEash KJ, Greenbaum AM, Gopalan PK, Link DC. 2010. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120: 2423 – 2431.en_US
dc.identifier.citedreferenceDing WX, Yin XM. 2008. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4: 141 – 150.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.