Show simple item record

Osteocytes Serve as a Progenitor Cell of Osteosarcoma

dc.contributor.authorSottnik, Joseph L.en_US
dc.contributor.authorCampbell, Brittanyen_US
dc.contributor.authorMehra, Rohiten_US
dc.contributor.authorBehbahani‐nejad, Omiden_US
dc.contributor.authorHall, Christopher L.en_US
dc.contributor.authorKeller, Evan T.en_US
dc.date.accessioned2014-07-03T14:41:37Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-07-03T14:41:37Z
dc.date.issued2014-08en_US
dc.identifier.citationSottnik, Joseph L.; Campbell, Brittany; Mehra, Rohit; Behbahani‐nejad, Omid ; Hall, Christopher L.; Keller, Evan T. (2014). "Osteocytes Serve as a Progenitor Cell of Osteosarcoma." Journal of Cellular Biochemistry 115(8): 1420-1429.en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107570
dc.description.abstractOsteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO‐Y4, a SV‐40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO‐Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. J. Cell. Biochem. 115: 1420–1429, 2014. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDMP1en_US
dc.subject.otherBONEen_US
dc.subject.otherOSTEOCYTEen_US
dc.subject.otherOSTEOSARCOMAen_US
dc.subject.otherCANCERen_US
dc.titleOsteocytes Serve as a Progenitor Cell of Osteosarcomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107570/1/jcb24793.pdf
dc.identifier.doi10.1002/jcb.24793en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferencePipas JM. 2009. SV40: Cell transformation and tumorigenesis. Virology 384: 294 – 303.en_US
dc.identifier.citedreferenceBielack SS, Carrle D, Hardes J, Schuck A, Paulussen M. 2008. Bone tumors in adolescents and young adults. Curr Treat Options Oncol 9: 67 – 80.en_US
dc.identifier.citedreferenceBonewald LF. 2011. The amazing osteocyte. J Bone Miner Res 26: 229 – 238.en_US
dc.identifier.citedreferenceCao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, Jia SF, Kleinerman ES. 2005. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res 65: 1124 – 1128.en_US
dc.identifier.citedreferenceCzekanska EM, Stoddart MJ, Richards RG, Hayes JS. 2012. In search of an osteoblast cell model for in vitro research. Eur Cells & Mater 24: 1 – 17.en_US
dc.identifier.citedreferenceFan TM. 2010. Animal models of osteosarcoma. Expert Rev Anticancer Ther 10: 1327 – 1338.en_US
dc.identifier.citedreferenceFogh J, Fogh JM, Orfeo T. 1977. One hundred and twenty‐seven cultured human tumor cell lines producing tumors in nude mice. J Nat Cancer Inst 59: 221 – 226.en_US
dc.identifier.citedreferenceFranz‐Odendaal TA, Hall BK, Witten PE. 2006. Buried alive: how osteoblasts become osteocytes. Dev Dyn 235: 176 – 190.en_US
dc.identifier.citedreferenceHenderson SR, Guiliano D, Presneau N, McLean S, Frow R, Vujovic S, Anderson J, Sebire N, Whelan J, Athanasou N, Flanagan AM, Boshoff C. 2005. A molecular map of mesenchymal tumors. Genome Biol 6: R76.en_US
dc.identifier.citedreferenceJones KB. 2011. Osteosarcomagenesis: modeling cancer initiation in the mouse. Sarcoma 2011: 694136.en_US
dc.identifier.citedreferenceKashima TG, Dongre A, Oppermann U, Athanasou NA. 2013. Dentine matrix protein 1 (DMP‐1) is a marker of bone‐forming tumours. Virchows Archiv. An Int J Pathol 462: 583 – 591.en_US
dc.identifier.citedreferenceKato Y, Windle JJ, Koop BA, Mundy GR, Bonewald LF. 1997. Establishment of an osteocyte‐like cell line, MLO‐Y4. J Bone Miner Res 12: 2014 – 2023.en_US
dc.identifier.citedreferenceKhanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L. 2000. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18: 261 – 271.en_US
dc.identifier.citedreferenceKimura K, Nakano T, Park YB, Tani M, Tsuda H, Beppu Y, Moriya H, Yokota J. 2002. Establishment of human osteosarcoma cell lines with high metastatic potential to lungs and their utilities for therapeutic studies on metastatic osteosarcoma. Clin Exp Metastasis 19: 477 – 485.en_US
dc.identifier.citedreferenceKnowles BB, McCarrick J, Fox N, Solter D, Damjanov I. 1990. Osteosarcomas in transgenic mice expressing an alpha‐amylase‐SV40 T‐antigen hybrid gene. Am J Pathol 137: 259 – 262.en_US
dc.identifier.citedreferenceKobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M, Honda K, Yamaguchi U, Shoji A, Tochigi N, Morioka H, Toyama Y, Hirohashi S, Kawai A, Yamada T. 2010. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Therapeut 9: 535 – 544.en_US
dc.identifier.citedreferenceKunita A, Kashima TG, Ohazama A, Grigoriadis AE, Fukayama M. 2011. Podoplanin is regulated by AP‐1 and promotes platelet aggregation and cell migration in osteosarcoma. Am J Pathol 179: 1041 – 1049.en_US
dc.identifier.citedreferenceLane DP, Crawford LV. 1979. T antigen is bound to a host protein in SV40‐transformed cells. Nature 278: 261 – 263.en_US
dc.identifier.citedreferenceLednicky JA, Stewart AR, Jenkins JJ, III, Finegold MJ, Butel JS. 1997. SV40 DNA in human osteosarcomas shows sequence variation among T‐antigen genes. Int J Cancer 72: 791 – 800.en_US
dc.identifier.citedreferenceLee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais‐Jarvis F, Ducy P, Karsenty G. 2007. Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456 – 469.en_US
dc.identifier.citedreferenceLevine AJ, Oren M. 2009. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9: 749 – 758.en_US
dc.identifier.citedreferenceMarton I, Johnson SE, Damjanov I, Currier KS, Sundberg JP, Knowles BB. 2000. Expression and immune recognition of SV40 Tag in transgenic mice that develop metastatic osteosarcomas. Transgenic Res 9: 115 – 125.en_US
dc.identifier.citedreferenceMohseny AB, Machado I, Cai Y, Schaefer KL, Serra M, Hogendoorn PC, Llombart‐Bosch A, Cleton‐Jansen AM. 2011. Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Invest. A J Tech Methods Pathol 91: 1195 – 1205.en_US
dc.identifier.citedreferenceMutsaers AJ, Ng AJ, Baker EK, Russell MR, Chalk AM, Wall M, Liddicoat BJ, Ho PW, Slavin JL, Goradia A, Martin TJ, Purton LE, Dickins RA, Walkley CR. 2013. Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage‐restricted transgenic shRNA. Bone 55: 166 – 178.en_US
dc.identifier.citedreferencePatane S, Avnet S, Coltella N, Costa B, Sponza S, Olivero M, Vigna E, Naldini L, Baldini N, Ferracini R, Corso S, Giordano S, Comoglio PM, Di Renzo MF. 2006. MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 66: 4750 – 4757.en_US
dc.identifier.citedreferencePautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, Milz S. 2004. Characterization of osteosarcoma cell lines MG‐63, Saos‐2 and U‐2 OS in comparison to human osteoblasts. Anticancer Res 24: 3743 – 3748.en_US
dc.identifier.citedreferenceAsai T, Ueda T, Itoh K, Yoshioka K, Aoki Y, Mori S, Yoshikawa H. 1998. Establishment and characterization of a murine osteosarcoma cell line (LM8) with high metastatic potential to the lung. Int J Cancer 76: 418 – 422.en_US
dc.identifier.citedreferenceAtkin SJ, Griffin BE, Dilworth SM. 2009. Polyoma virus and simian virus 40 as cancer models: history and perspectives. Semin Cancer Biol 19: 211 – 217.en_US
dc.identifier.citedreferenceBaird K, Davis S, Antonescu CR, Harper UL, Walker RL, Chen Y, Glatfelter AA, Duray PH, Meltzer PS. 2005. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65: 9226 – 9235.en_US
dc.identifier.citedreferenceBarger A, Graca R, Bailey K, Messick J, de Lorimier LP, Fan T, Hoffmann W. 2005. Use of alkaline phosphatase staining to differentiate canine osteosarcoma from other vimentin‐positive tumors. Vet Pathol 42: 161 – 165.en_US
dc.identifier.citedreferenceBarroga EF, Kadosawa T, Okumura M, Fujinaga T. 1999. Establishment and characterization of the growth and pulmonary metastasis of a highly lung metastasizing cell line from canine osteosarcoma in nude mice. J Vet Med Sci/Jap Soc Vet Sci 61: 361 – 367.en_US
dc.identifier.citedreferenceBellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS. 2008. Small integrin‐binding ligand N‐linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8: 212 – 226.en_US
dc.identifier.citedreferenceQin C, D‘Souza R, Feng JQ. 2007. Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 86: 1134 – 1141.en_US
dc.identifier.citedreferenceRhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. 2004. ONCOMINE: a cancer microarray database and integrated data‐mining platform. Neoplasia 6: 1 – 6.en_US
dc.identifier.citedreferenceRodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar‐Shavit Z, Shull S, Mann K, Rodan GA. 1987. Characterization of a human osteosarcoma cell line (Saos‐2) with osteoblastic properties. Cancer Res 47: 4961 – 4966.en_US
dc.identifier.citedreferenceSchmidt AF, Nielen M, Klungel OH, Hoes AW, de Boer A, Groenwold RH, Kirpensteijn J. 2013. Prognostic factors of early metastasis and mortality in dogs with appendicular osteosarcoma after receiving surgery: an individual patient data meta‐analysis. Prev Vet Med 112: 414 – 422.en_US
dc.identifier.citedreferenceSottnik JL, Daignault‐Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET, Hall CL. 2013. Integrin alpha2beta 1 (alpha 2beta 1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 30: 569 – 578.en_US
dc.identifier.citedreferenceSottnik JL, Duval DL, Ehrhart EJ, Thamm DH. 2010. An orthotopic, postsurgical model of luciferase transfected murine osteosarcoma with spontaneous metastasis. Clin Exp Metastasis 27: 151 – 160.en_US
dc.identifier.citedreferenceSu Y, Luo X, He BC, Wang Y, Chen L, Zuo GW, Liu B, Bi Y, Huang J, Zhu GH, He Y, Kang Q, Luo J, Shen J, Chen J, Jin X, Haydon RC, He TC, Luu HH. 2009. Establishment and characterization of a new highly metastatic human osteosarcoma cell line. Clin Exp Metastasis 26: 599 – 610.en_US
dc.identifier.citedreferenceWalkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, Rodda SJ, Snay E, Dunning P, Fahey FH, Alt FW, McMahon AP, Orkin SH. 2008. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 22: 1662 – 1676.en_US
dc.identifier.citedreferenceWijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. 2011. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL‐dependent pathway. PloS One 6: e25900.en_US
dc.identifier.citedreferenceWoo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. 2011. Cell line IDG‐SW3 replicates osteoblast‐to‐late‐osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26: 2634 – 2646.en_US
dc.identifier.citedreferenceWysolmerski JJ. 2013. Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone 54: 230 – 236.en_US
dc.identifier.citedreferenceYe J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer‐BLAST: a tool to design target‐specific primers for polymerase chain reaction. BMC Bioinform 13: 134.en_US
dc.identifier.citedreferenceYin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA. 1999. TGF‐beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103: 197 – 206.en_US
dc.identifier.citedreferenceYu L, van der Valk M, Cao J, Han CY, Juan T, Bass MB, Deshpande C, Damore MA, Stanton R, Babij P. 2011. Sclerostin expression is induced by BMPs in human Saos‐2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 49: 1131 – 1140.en_US
dc.identifier.citedreferenceZhang K, Barragan‐Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF. 2006. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26: 4539 – 4552.en_US
dc.identifier.citedreferenceZhu L, McManus MM, Hughes DP. 2013. Understanding the biology of bone sarcoma from early initiating events through late events in metastasis and disease progression. Front Oncol 3: 230.en_US
dc.identifier.citedreferenceBerman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, Fonhoue BD, Caron A, Bronson R, Bouxsein ML, Mukherjee S, Lees JA. 2008. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci USA 105: 11851 – 11856.en_US
dc.identifier.citedreferenceBielack S, Carrle D, Casali PG. 2009. Osteosarcoma: ESMO clinical recommendations for diagnosis, treatment and follow‐up. Ann Oncol: Off J Eur Soc. Med. Oncol/ESMO 20 ( Suppl 4 ): 137 – 139.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.