Show simple item record

The neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting‐state amygdala connectivity

dc.contributor.authorSripada, Rebecca K.en_US
dc.contributor.authorWelsh, Robert C.en_US
dc.contributor.authorMarx, Christine E.en_US
dc.contributor.authorLiberzon, Israelen_US
dc.date.accessioned2014-07-03T14:41:39Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:39Z
dc.date.issued2014-07en_US
dc.identifier.citationSripada, Rebecca K.; Welsh, Robert C.; Marx, Christine E.; Liberzon, Israel (2014). "The neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting‐state amygdala connectivity." Human Brain Mapping 35(7): 3249-3261.en_US
dc.identifier.issn1065-9471en_US
dc.identifier.issn1097-0193en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107578
dc.description.abstractThe neurosteroids allopregnanolone and dehydroepiandrosterone (DHEA) are integral components of the stress response and exert positive modulatory effects on emotion in both human and animal studies. Although these antidepressant and anxiolytic effects have been well established, to date, little research has examined their neural correlates, and no research has been conducted into the effects of neurosteroids on large‐scale networks at rest. To investigate the neurosteroid impact on intrinsic connectivity networks, participants were administered 400 mg of pregnenolone ( N  = 16), 400 mg of DHEA ( N  = 14), or placebo ( N  = 15) and underwent 3T fMRI. Resting‐state brain connectivity was measured using amygdala as a seed region. When compared with placebo, pregnenolone administration reduced connectivity between amygdala and dorsal medial prefrontal cortex, between amygdala and precuneus, and between amygdala and hippocampus. DHEA reduced connectivity between amygdala and periamygdala and between amygdala and insula. Reductions in amygdala to precuneus connectivity were associated with less self‐reported negative affect. These results demonstrate that neurosteroids modulate amygdala functional connectivity during resting state and may be a target for pharmacological intervention. Additionally, allopregnanolone and DHEA may shift the balance between salience network and default network, a finding that could provide insight into the neurocircuitry of anxiety psychopathology. Hum Brain Mapp 35:3249–3261, 2014 . © 2013 Wiley Periodicals, Inc .en_US
dc.publisherUniversity of Iowaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPregnenoloneen_US
dc.subject.otherDehydroepiandrosteroneen_US
dc.subject.otherFMRIen_US
dc.subject.otherPharmaco‐FMRIen_US
dc.subject.otherNeuroactive Steroiden_US
dc.subject.otherAnxietyen_US
dc.titleThe neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting‐state amygdala connectivityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107578/1/hbm22399.pdf
dc.identifier.doi10.1002/hbm.22399en_US
dc.identifier.sourceHuman Brain Mappingen_US
dc.identifier.citedreferenceRoy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP ( 2009 ): Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45: 614 – 626.en_US
dc.identifier.citedreferenceSpreng RN, Mar RA, Kim AS ( 2009 ): The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta‐analysis. J Cogn Neurosci 21: 489 – 510.en_US
dc.identifier.citedreferenceSridharan D, Levitin DJ, Menon V ( 2008 ): A critical role for the right fronto‐insular cortex in switching between central‐executive and default‐mode networks. Proc Natl Acad Sci USA 105: 12569 – 12574.en_US
dc.identifier.citedreferenceSripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, Liberzon I ( 2012a ): Altered resting‐state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci 37: 241 – 249.en_US
dc.identifier.citedreferenceSripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, Liberzon I ( 2012b ): Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med 74: 904 – 911.en_US
dc.identifier.citedreferenceSripada RK, Marx CE, King AP, Rajaram N, Garfinkel SN, Abelson JL, Liberzon I ( 2013a ): DHEA enhances emotion regulation neurocircuits and modulates memory for emotional stimuli. Neuropsychopharmacology 38: 1798 – 1807.en_US
dc.identifier.citedreferenceSripada RK, Marx CE, King AP, Rampton JC, Ho SS, Liberzon I ( 2013b ): Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits. Biol Psychiatry 73: 1045 – 1053.en_US
dc.identifier.citedreferenceStanczyk FZ ( 2006 ): Measurement of androgens in women. Semin Reprod Med 24: 78 – 85.en_US
dc.identifier.citedreferenceStein MB, Simmons AN, Feinstein JS, Paulus MP ( 2007 ): Increased amygdala and insula activation during emotion processing in anxiety‐prone subjects. Am J Psychiatry 164: 318 – 327.en_US
dc.identifier.citedreferenceStrawn JR, Bitter SM, Weber WA, Chu WJ, Whitsel RM, Adler C, Cerullo MA, Eliassen J, Strakowski SM, Delbello MP ( 2012 ): Neurocircuitry of generalized anxiety disorder in adolescents: A pilot functional neuroimaging and functional connectivity study. Depress Anxiety 29: 939 – 947.en_US
dc.identifier.citedreferenceToro R, Fox PT, Paus T ( 2008 ): Functional coactivation map of the human brain. Cereb Cortex 18: 2553 – 2559.en_US
dc.identifier.citedreferenceUrani A, Roman FJ, Phan VL, Su TP, Maurice T ( 2001 ): The antidepressant‐like effect induced by sigma(1)‐receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 298: 1269 – 1279.en_US
dc.identifier.citedreferenceUzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A ( 1998 ): Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA 95: 3239 – 3244.en_US
dc.identifier.citedreferenceVan Dijk KR, Sabuncu MR, Buckner RL ( 2012 ): The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59: 431 – 438.en_US
dc.identifier.citedreferencevan Goozen SH, van den Ban E, Matthys W, Cohen‐Kettenis PT, Thijssen JH, van Engeland H ( 2000 ): Increased adrenal androgen functioning in children with oppositional defiant disorder: A comparison with psychiatric and normal controls. J Am Acad Child Adolesc Psychiatry 39: 1446 – 1451.en_US
dc.identifier.citedreferencevan Marle HJ, Hermans EJ, Qin S, Fernandez G ( 2010 ): Enhanced resting‐state connectivity of amygdala in the immediate aftermath of acute psychological stress. Neuroimage 53: 348 – 354.en_US
dc.identifier.citedreferencevan Wingen G, van Broekhoven F, Verkes RJ, Petersson KM, Backstrom T, Buitelaar J, Fernandez G ( 2007 ): How progesterone impairs memory for biologically salient stimuli in healthy young women. J Neurosci 27: 11416 – 11423.en_US
dc.identifier.citedreferencevan Wingen GA, van Broekhoven F, Verkes RJ, Petersson KM, Backstrom T, Buitelaar JK, Fernandez G ( 2008 ): Progesterone selectively increases amygdala reactivity in women. Mol Psychiatry 13: 325 – 333.en_US
dc.identifier.citedreferenceVeer IM, Oei NY, Spinhoven P, van Buchem MA, Elzinga BM, Rombouts SA ( 2011 ): Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures. Neuroimage 57: 1534 – 1541.en_US
dc.identifier.citedreferenceWang C, Marx CE, Morrow AL, Wilson WA, Moore SD ( 2007 ): Neurosteroid modulation of GABAergic neurotransmission in the central amygdala: A role for NMDA receptors. Neurosci Lett 415: 118 – 123.en_US
dc.identifier.citedreferenceWatson D, Clark LA ( 1994 ): Manual for the Positive and Negative Affect Schedule—Expanded Form. Ames: University of Iowa.en_US
dc.identifier.citedreferenceWhalen PJ, Shin LM, McInerney SC, Fischer H, Wright CI, Rauch SL ( 2001 ): A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion 1: 70 – 83.en_US
dc.identifier.citedreferenceWong SY, Leung JC, Kwok T, Ohlsson C, Vandenput L, Leung PC, Woo J ( 2011 ): Low DHEAS levels are associated with depressive symptoms in elderly Chinese men: Results from a large study. Asian J Androl 13: 898 – 902.en_US
dc.identifier.citedreferenceYehuda R, Brand SR, Golier JA, Yang RK ( 2006 ): Clinical correlates of DHEA associated with post‐traumatic stress disorder. Acta Psychiatr Scand 114: 187 – 193.en_US
dc.identifier.citedreferenceYin Y, Jin C, Hu X, Duan L, Li Z, Song M, Chen H, Feng B, Jiang T, Jin H, Wong C, Gong Q, Li L ( 2011 ): Altered resting‐state functional connectivity of thalamus in earthquake‐induced posttraumatic stress disorder: A functional magnetic resonance imaging study. Brain Res 1411: 98 – 107.en_US
dc.identifier.citedreferenceZhang S, Li CS ( 2012 ): Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage 59: 3548 – 3562.en_US
dc.identifier.citedreferenceImamura M, Prasad C ( 1998 ): Modulation of GABA‐gated chloride ion influx in the brain by dehydroepiandrosterone and its metabolites. Biochem Biophys Res Commun 243: 771 – 775.en_US
dc.identifier.citedreferenceKancheva R, Hill M, Novak Z, Chrastina J, Kancheva L, Starka L ( 2011 ): Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience 191: 22 – 27.en_US
dc.identifier.citedreferenceAdolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA, Anderson A, Lee GP, Damasio AR ( 1999 ): Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37: 1111 – 1117.en_US
dc.identifier.citedreferenceAggleton JP, Burton MJ, Passingham RE ( 1980 ): Cortical and subcortical afferents to the amygdala of the rhesus monkey ( Macaca mulatta ). Brain Res 190: 347 – 368.en_US
dc.identifier.citedreferenceAlhaj HA, Massey AE, McAllister‐Williams RH ( 2006 ): Effects of DHEA administration on episodic memory, cortisol and mood in healthy young men: A double‐blind, placebo‐controlled study. Psychopharmacology (Berl) 188: 541 – 551.en_US
dc.identifier.citedreferenceAmin Z, Mason GF, Cavus I, Krystal JH, Rothman DL, Epperson CN ( 2006 ): The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women. Pharmacol Biochem Behav 84: 635 – 643.en_US
dc.identifier.citedreferenceAmunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K ( 2000 ): Brodmann's areas 17 and 18 brought into stereotaxic space‐where and how variable? Neuroimage 11: 66 – 84.en_US
dc.identifier.citedreferenceAmunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K ( 2005 ): Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat Embryol (Berl) 210: 343 – 352.en_US
dc.identifier.citedreferenceAnderson JS, Druzgal TJ, Lopez‐Larson M, Jeong EK, Desai K, Yurgelun‐Todd D ( 2011 ): Network anticorrelations, global regression, and phase‐shifted soft tissue correction. Hum Brain Mapp 32: 919 – 934.en_US
dc.identifier.citedreferenceHigashi T, Daifu Y, Ikeshima T, Yagi T, Shimada K ( 2003 ): Studies on neurosteroids XV. Development of enzyme‐linked immunosorbent assay for examining whether pregnenolone sulfate is a veritable neurosteroid. J Pharm Biomed Anal 30: 1907 – 1917.en_US
dc.identifier.citedreferenceArlt W, Justl HG, Callies F, Reincke M, Hubler D, Oettel M, Ernst M, Schulte HM, Allolio B ( 1998 ): Oral dehydroepiandrosterone for adrenal androgen replacement: Pharmacokinetics and peripheral conversion to androgens and estrogens in young healthy females after dexamethasone suppression. J Clin Endocrinol Metab 83: 1928 – 1934.en_US
dc.identifier.citedreferenceArmony JL, LeDoux JE ( 1997 ): How the brain processes emotional information. Ann NY Acad Sci 821: 259 – 270.en_US
dc.identifier.citedreferenceBarrett‐Connor E, von Muhlen D, Laughlin GA, Kripke A ( 1999 ): Endogenous levels of dehydroepiandrosterone sulfate, but not other sex hormones, are associated with depressed mood in older women: The Rancho Bernardo Study. J Am Geriatr Soc 47: 685 – 691.en_US
dc.identifier.citedreferenceBehzadi Y, Restom K, Liau J, Liu TT ( 2007 ): A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37: 90 – 101.en_US
dc.identifier.citedreferenceBelelli D, Lambert JJ ( 2005 ): Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6: 565 – 575.en_US
dc.identifier.citedreferenceBishop SJ, Duncan J, Lawrence AD ( 2004 ): State anxiety modulation of the amygdala response to unattended threat‐related stimuli. J Neurosci 24: 10364 – 10368.en_US
dc.identifier.citedreferenceBritton JC, Phan KL, Taylor SF, Welsh RC, Berridge KC, Liberzon I ( 2006 ): Neural correlates of social and nonsocial emotions: An fMRI study. Neuroimage 31: 397 – 409.en_US
dc.identifier.citedreferenceCauda F, D'Agata F, Sacco K, Duca S, Geminiani G, Vercelli A ( 2011 ): Functional connectivity of the insula in the resting brain. Neuroimage 55: 8 – 23.en_US
dc.identifier.citedreferenceChang C, Glover GH ( 2009 ): Effects of model‐based physiological noise correction on default mode network anti‐correlations and correlations. Neuroimage 47: 1448 – 1459.en_US
dc.identifier.citedreferenceCyr M, Landry M, Di Paolo T ( 2000 ): Modulation by estrogen‐receptor directed drugs of 5‐hydroxytryptamine‐2A receptors in rat brain. Neuropsychopharmacology 23: 69 – 78.en_US
dc.identifier.citedreferenceDennis EL, Gotlib IH, Thompson PM, Thomason ME ( 2011 ): Anxiety modulates insula recruitment in resting‐state functional magnetic resonance imaging in youth and adults. Brain Connectivity 1: 245 – 254.en_US
dc.identifier.citedreferenceDmitrieva TN, Oades RD, Hauffa BP, Eggers C ( 2001 ): Dehydroepiandrosterone sulphate and corticotropin levels are high in young male patients with conduct disorder: Comparisons for growth factors, thyroid and gonadal hormones. Neuropsychobiology 43: 134 – 140.en_US
dc.identifier.citedreferenceDosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE ( 2007 ): Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104: 11073 – 11078.en_US
dc.identifier.citedreferenceEbner MJ, Corol DI, Havlikova H, Honour JW, Fry JP ( 2006 ): Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology 147: 179 – 190.en_US
dc.identifier.citedreferenceEickhoff S, Walters NB, Schleicher A, Kril J, Egan GF, Zilles K, Watson JD, Amunts K ( 2005 ): High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24: 206 – 215.en_US
dc.identifier.citedreferenceEngin E, Treit D ( 2007 ): The anxiolytic‐like effects of allopregnanolone vary as a function of intracerebral microinfusion site: The amygdala, medial prefrontal cortex, or hippocampus. Behav Pharmacol 18: 461 – 470.en_US
dc.identifier.citedreferenceEtkin A, Wager TD ( 2007 ): Functional neuroimaging of anxiety: A meta‐analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164: 1476 – 1488.en_US
dc.identifier.citedreferenceEtkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J ( 2004 ): Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44: 1043 – 1055.en_US
dc.identifier.citedreferenceFox MD, Raichle ME ( 2007 ): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700 – 711.en_US
dc.identifier.citedreferenceFox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005 ): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673 – 9678.en_US
dc.identifier.citedreferenceFrye CA, Rhodes ME ( 2006 ): Infusions of 5α‐pregnan‐3α‐ol‐20‐one (3α,5α‐THP) to the ventral tegmental area, but not the substantia nigra, enhance exploratory, anti‐anxiety, social and sexual behaviours and concomitantly increase 3α,5α‐THP concentrations in the hippocampus, diencephalon and cortex of ovariectomised oestrogen‐primed rats. J Neuroendocrinol 18: 960 – 975.en_US
dc.identifier.citedreferenceFrye CA, Walf AA, Rhodes ME, Harney JP ( 2004 ): Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild‐type mice, but not those deficient in type 1 5α‐reductase. Brain Res 1004: 116 – 124.en_US
dc.identifier.citedreferenceFulwiler CE, King JA, Zhang N ( 2012 ): Amygdala‐orbitofrontal resting‐state functional connectivity is associated with trait anger. Neuroreport 23: 606 – 610.en_US
dc.identifier.citedreferenceGenud R, Merenlender A, Gispan‐Herman I, Maayan R, Weizman A, Yadid G ( 2009 ): DHEA lessens depressive‐like behavior via GABA‐ergic modulation of the mesolimbic system. Neuropsychopharmacology 34: 577 – 584.en_US
dc.identifier.citedreferenceGhashghaei HT, Hilgetag CC, Barbas H ( 2007 ): Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34: 905 – 923.en_US
dc.identifier.citedreferenceHamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH ( 2012 ): Functional neuroimaging of major depressive disorder: A meta‐analysis and new integration of baseline activation and neural response data. Am J Psychiatry 169: 693 – 703.en_US
dc.identifier.citedreferenceKim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ ( 2011 ): Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb Cortex 21: 1667 – 1673.en_US
dc.identifier.citedreferenceLanius RA, Bluhm RL, Coupland NJ, Hegadoren KM, Rowe B, Theberge J, Neufeld RW, Williamson PC, Brimson M ( 2010 ): Default mode network connectivity as a predictor of post‐traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand 121: 33 – 40.en_US
dc.identifier.citedreferenceLeichnetz GR ( 2001 ): Connections of the medial posterior parietal cortex (area 7 m) in the monkey. Anat Rec 263: 215 – 236.en_US
dc.identifier.citedreferenceLi Y, Qin W, Jiang T, Zhang Y, Yu C ( 2012 ): Sex‐dependent correlations between the personality dimension of harm avoidance and the resting‐state functional connectivity of amygdala subregions. PLoS One 7: e35925.en_US
dc.identifier.citedreferenceLiberzon I, Phan KL, Decker LR, Taylor SF ( 2003 ): Extended amygdala and emotional salience: A PET activation study of positive and negative affect. Neuropsychopharmacology 28: 726 – 733.en_US
dc.identifier.citedreferenceLiere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjovall J, Baulieu EE ( 2004 ): Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J Lipid Res 45: 2287 – 2302.en_US
dc.identifier.citedreferenceLiu D, Dillon JS ( 2004 ): Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: Evidence for a cell surface receptor. Steroids 69: 279 – 289.en_US
dc.identifier.citedreferenceLiu S, Sjovall J, Griffiths WJ ( 2003 ): Neurosteroids in rat brain: Extraction, isolation, and analysis by nanoscale liquid chromatography–electrospray mass spectrometry. Anal Chem 75: 5835 – 5846.en_US
dc.identifier.citedreferenceMajewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM ( 1986 ): Steroid hormone metabolites are barbiturate‐like modulators of the GABA receptor. Science 232: 1004 – 1007.en_US
dc.identifier.citedreferenceManinger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH ( 2009 ): Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 30: 65 – 91.en_US
dc.identifier.citedreferenceMarx CE, Shampine LJ, Duncan GE, VanDoren MJ, Grobin AC, Massing MW, Madison RD, Bradford DW, Butterfield MI, Lieberman JA, Morrow AL ( 2006a ): Clozapine markedly elevates pregnenolone in rat hippocampus, cerebral cortex, and serum: Candidate mechanism for superior efficacy? Pharmacol Biochem Behav 84: 598 – 608.en_US
dc.identifier.citedreferenceMarx CE, Trost WT, Shampine L, Behm FM, Giordano LA, Massing MW, Rose JE ( 2006b ): Neuroactive steroids, negative affect, and nicotine dependence severity in male smokers. Psychopharmacology (Berl) 186: 462 – 472.en_US
dc.identifier.citedreferenceMarx CE, Trost WT, Shampine LJ, Stevens RD, Hulette CM, Steffens DC, Ervin JF, Butterfield MI, Blazer DG, Massing MW, Lieberman JA ( 2006c ): The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer's disease. Biol Psychiatry 60: 1287 – 1294.en_US
dc.identifier.citedreferenceMarx CE, Keefe RS, Buchanan RW, Hamer RM, Kilts JD, Bradford DW, Strauss JL, Naylor JC, Payne VM, Lieberman JA, Savitz AJ, Leimone LA, Dunn L, Porcu P, Morrow AL, Shampine LJ ( 2009 ): Proof‐of‐concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology 34: 1885 – 1903.en_US
dc.identifier.citedreferenceMelchior CL, Ritzmann RF ( 1994 ): Dehydroepiandrosterone is an anxiolytic in mice on the plus maze. Pharmacol Biochem Behav 47: 437 – 441.en_US
dc.identifier.citedreferenceMenon V ( 2011 ): Large‐scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci 15: 483 – 506.en_US
dc.identifier.citedreferenceMorean ME, de Wit H, King AC, Sofuoglu M, Rueger SY, O'Malley SS ( 2013 ): The drug effects questionnaire: Psychometric support across three drug types. Psychopharmacology (Berl) 227: 177 – 192.en_US
dc.identifier.citedreferenceMorsink LF, Vogelzangs N, Nicklas BJ, Beekman AT, Satterfield S, Rubin SM, Yaffe K, Simonsick E, Newman AB, Kritchevsky SB, Penninx BW ( 2007 ): Associations between sex steroid hormone levels and depressive symptoms in elderly men and women: Results from the Health ABC study. Psychoneuroendocrinology 32: 874 – 883.en_US
dc.identifier.citedreferenceNaert G, Maurice T, Tapia‐Arancibia L, Givalois L ( 2007 ): Neuroactive steroids modulate HPA axis activity and cerebral brain‐derived neurotrophic factor (BDNF) protein levels in adult male rats. Psychoneuroendocrinology 32: 1062 – 1078.en_US
dc.identifier.citedreferenceNaylor JC, Hulette CM, Steffens DC, Shampine LJ, Ervin JF, Payne VM, Massing MW, Kilts JD, Strauss JL, Calhoun PS, Calnaido RP, Blazer DG, Lieberman JA, Madison RD, Marx CE ( 2008 ): Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer's disease, and related to neuropathological disease stage. J Clin Endocrinol Metab 93: 3173 – 3178.en_US
dc.identifier.citedreferenceNaylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B, Sedo A, Yuldasheva N, Majeed Y, Beri D, Jiang S, Seymour VA, McKeown L, Kumar B, Harteneck C, O'Regan D, Wheatcroft SB, Kearney MT, Jones C, Porter KE, Beech DJ ( 2010 ): Pregnenolone sulphate‐ and cholesterol‐regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106: 1507 – 1515.en_US
dc.identifier.citedreferenceOler JA, Birn RM, Patriat R, Fox AS, Shelton SE, Burghy CA, Stodola DE, Essex MJ, Davidson RJ, Kalin NH ( 2012 ): Evidence for coordinated functional activity within the extended amygdala of non‐human and human primates. Neuroimage 61: 1059 – 1066.en_US
dc.identifier.citedreferenceOlff M, de Vries GJ, Guzelcan Y, Assies J, Gersons BP ( 2007 ): Changes in cortisol and DHEA plasma levels after psychotherapy for PTSD. Psychoneuroendocrinology 32: 619 – 626.en_US
dc.identifier.citedreferenceOppenheimer SM, Gelb A, Girvin JP, Hachinski VC ( 1992 ): Cardiovascular effects of human insular cortex stimulation. Neurology 42: 1727 – 1732.en_US
dc.identifier.citedreferenceOssewaarde L, Hermans EJ, van Wingen GA, Kooijman SC, Johansson IM, Backstrom T, Fernandez G ( 2010a ): Neural mechanisms underlying changes in stress‐sensitivity across the menstrual cycle. Psychoneuroendocrinology 35: 47 – 55.en_US
dc.identifier.citedreferenceOssewaarde L, van Wingen GA, Kooijman SC, Backstrom T, Fernandez G, Hermans EJ ( 2010b ): Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc Cogn Affect Neurosci 6: 612 – 620.en_US
dc.identifier.citedreferencePannekoek JN, Veer IM, van Tol MJ, van der Werff SJ, Demenescu LR, Aleman A, Veltman DJ, Zitman FG, Rombouts SA, van der Wee NJ ( 2013a ): Aberrant limbic and salience network resting‐state functional connectivity in panic disorder without comorbidity. J Affect Disord 145: 29 – 35.en_US
dc.identifier.citedreferencePannekoek JN, Veer IM, van Tol MJ, van der Werff SJ, Demenescu LR, Aleman A, Veltman DJ, Zitman FG, Rombouts SA, van der Wee NJ ( 2013b ): Resting‐state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity. Eur Neuropsychopharmacol 23: 186 – 195.en_US
dc.identifier.citedreferencePantazatos SP, Talati A, Pavlidis P, Hirsch J ( 2012 ): Cortical functional connectivity decodes subconscious, task‐irrelevant threat‐related emotion processing. Neuroimage 61: 1355 – 1363.en_US
dc.identifier.citedreferenceParvizi J, Van Hoesen GW, Buckwalter J, Damasio A ( 2006 ): Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci USA 103: 1563 – 1568.en_US
dc.identifier.citedreferencePatchev VK, Shoaib M, Holsboer F, Almeida OF ( 1994 ): The neurosteroid tetrahydroprogesterone counteracts corticotropin‐releasing hormone‐induced anxiety and alters the release and gene expression of corticotropin‐releasing hormone in the rat hypothalamus. Neuroscience 62: 265 – 271.en_US
dc.identifier.citedreferencePatel R, Spreng RN, Shin LM, Girard TA ( 2012 ): Neurocircuitry models of posttraumatic stress disorder and beyond: A meta‐analysis of functional neuroimaging studies. Neurosci Biobehav Rev 36: 2130 – 2142.en_US
dc.identifier.citedreferencePhan KL, Wager T, Taylor SF, Liberzon I ( 2002 ): Functional neuroanatomy of emotion: A meta‐analysis of emotion activation studies in PET and fMRI. Neuroimage 16: 331 – 348.en_US
dc.identifier.citedreferencePibiri F, Nelson M, Guidotti A, Costa E, Pinna G ( 2008 ): Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder. Proc Natl Acad Sci USA 105: 5567 – 5572.en_US
dc.identifier.citedreferencePower JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE ( 2012 ): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59: 2142 – 2154.en_US
dc.identifier.citedreferenceQin P, Northoff G ( 2011 ): How is our self related to midline regions and the default‐mode network? Neuroimage 57: 1221 – 1233.en_US
dc.identifier.citedreferenceRabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, Phan KL ( 2011 ): Altered amygdala resting‐state functional connectivity in post‐traumatic stress disorder. Front Psychiatry 2: 62.en_US
dc.identifier.citedreferenceRaichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL ( 2001 ): A default mode of brain function. Proc Natl Acad Sci USA 98: 676 – 682.en_US
dc.identifier.citedreferenceRasmusson AM, Pinna G, Paliwal P, Weisman D, Gottschalk C, Charney D, Krystal J, Guidotti A ( 2006 ): Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry 60: 704 – 713.en_US
dc.identifier.citedreferenceRomeo E, Strohle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R ( 1998 ): Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155: 910 – 913.en_US
dc.identifier.citedreferenceSatterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH ( 2013 ): An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data. Neuroimage 64: 240 – 256.en_US
dc.identifier.citedreferenceSchmidt PJ, Daly RC, Bloch M, Smith MJ, Danaceau MA, St. Clair LS, Murphy JH, Haq N, Rubinow DR ( 2005 ): Dehydroepiandrosterone monotherapy in midlife‐onset major and minor depression. Arch Gen Psychiatry 62: 154 – 162.en_US
dc.identifier.citedreferenceSchumacher M, Liere P, Akwa Y, Rajkowski K, Griffiths W, Bodin K, Sjovall J, Baulieu EE ( 2008 ): Pregnenolone sulfate in the brain: A controversial neurosteroid. Neurochem Int 52: 522 – 540.en_US
dc.identifier.citedreferenceSeeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007 ): Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349 – 2356.en_US
dc.identifier.citedreferenceSheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC ( 1998 ): The Mini‐International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM‐IV and ICD‐10. J Clin Psychiatry 59 (Suppl 20): 22 – 33; quiz 34–57.en_US
dc.identifier.citedreferenceShirayama Y, Muneoka K, Fukumoto M, Tadokoro S, Fukami G, Hashimoto K, Iyo M ( 2011 ): Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial prefrontal cortex, produce antidepressant effects on the learned helplessness rats. Hippocampus 21: 1105 – 1113.en_US
dc.identifier.citedreferenceSimmons AN, Paulus MP, Thorp SR, Matthews SC, Norman SB, Stein MB ( 2008 ): Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence. Biol Psychiatry 64: 681 – 690.en_US
dc.identifier.citedreferenceSingh VB, Kalimi M, Phan TH, Boadle‐Biber MC ( 1994 ): Intracranial dehydroepiandrosterone blocks the activation of tryptophan hydroxylase in response to acute sound stress. Mol Cell Neurosci 5: 176 – 181.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.