Show simple item record

Solar wind pressure pulse‐driven magnetospheric vortices and their global consequences

dc.contributor.authorShi, Q. Q.en_US
dc.contributor.authorHartinger, M.D.en_US
dc.contributor.authorAngelopoulos, V.en_US
dc.contributor.authorTian, A.M.en_US
dc.contributor.authorFu, S.Y.en_US
dc.contributor.authorZong, Q.‐g.en_US
dc.contributor.authorWeygand, J. M.en_US
dc.contributor.authorRaeder, J.en_US
dc.contributor.authorPu, Z.Y.en_US
dc.contributor.authorZhou, X.Z.en_US
dc.contributor.authorDunlop, M.W.en_US
dc.contributor.authorLiu, W.L.en_US
dc.contributor.authorZhang, H.en_US
dc.contributor.authorYao, Z.H.en_US
dc.contributor.authorShen, X.C.en_US
dc.date.accessioned2014-08-06T16:49:30Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:30Z
dc.date.issued2014-06en_US
dc.identifier.citationShi, Q. Q.; Hartinger, M.D.; Angelopoulos, V.; Tian, A.M.; Fu, S.Y.; Zong, Q.‐g. ; Weygand, J. M.; Raeder, J.; Pu, Z.Y.; Zhou, X.Z.; Dunlop, M.W.; Liu, W.L.; Zhang, H.; Yao, Z.H.; Shen, X.C. (2014). "Solar wind pressure pulseâ driven magnetospheric vortices and their global consequences." Journal of Geophysical Research: Space Physics 119(6): 4274-4280.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107999
dc.description.abstractWe report the in situ observation of a plasma vortex induced by a solar wind dynamic pressure enhancement in the nightside plasma sheet using multipoint measurements from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. The vortex has a scale of 5–10 Re and propagates several Re downtail, expanding while propagating. The features of the vortex are consistent with the prediction of the Sibeck (1990) model, and the vortex can penetrate deep (~8 Re ) in the dawn‐dusk direction and couple to field line oscillations. Global magnetohydrodynamics simulations are carried out, and it is found that the simulation and observations are consistent with each other. Data from THEMIS ground magnetometer stations indicate a poleward propagating vortex in the ionosphere, with a rotational sense consistent with the existence of the vortex observed in the magnetotail. Key Points Solar wind pressure pulse‐driven vortex was observed in the magnetosphere Simulation and ground magnetic field data confirm this tailward moving vortex The vortex can penetrate deep inside the tail plasma sheet and couple to FLRsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringeren_US
dc.subject.otherSolar Wind Pressure Pulseen_US
dc.subject.otherPlasma Sheeten_US
dc.subject.otherField‐Aligned Currenten_US
dc.subject.otherMagnetosphere Vortexen_US
dc.subject.otherULF Waveen_US
dc.titleSolar wind pressure pulse‐driven magnetospheric vortices and their global consequencesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107999/1/jgra51112.pdf
dc.identifier.doi10.1002/2013JA019551en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSamsonov, A. A., and D. G. Sibeck ( 2013 ), Large‐scale flow vortices following a magnetospheric sudden impulse, J. Geophys. Res. Space Physics, 118, 3055 – 3064, doi: 10.1002/jgra.50329.en_US
dc.identifier.citedreferenceJuusola, L., K. Andreeova, O. Amm, K. Kauristie, S. E. Milan, M. Palmroth, and N. Partamies ( 2010 ), Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere, Ann. Geophys., 28 ( 10 ), 1945 – 1959.en_US
dc.identifier.citedreferenceKeiling, A., et al. ( 2009 ), Substorm current wedge driven by plasma flow vortices: THEMIS observations, J. Geophys. Res., 114, A00C22, doi: 10.1029/2009JA014114.en_US
dc.identifier.citedreferenceKepko, L., H. E. Spence, and H. J. Singer ( 2002 ), ULF waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 29 ( 8 ), 1197, doi: 10.1029/2001GL014405.en_US
dc.identifier.citedreferenceKivelson, M. G., and D. J. Southwood ( 1985 ), Resonant ulf waves: A new interpretation, Geophys. Res. Lett., 12 ( 1 ), 49 – 52.en_US
dc.identifier.citedreferenceKivelson, M. G., and D. J. Southwood ( 1991 ), Ionospheric traveling vortex generation by solar wind buffeting of the magnetosphere, J. Geophys. Res., 96 ( A2 ), 1661 – 1667.en_US
dc.identifier.citedreferenceLui, A. T. Y., E. Spanswick, E. F. Donovan, J. Liang, W. W. Liu, O. LeContel, and Q.‐G. Zong ( 2010 ), A transient narrow poleward extrusion from the diffuse aurora and the concurrent magnetotail activity, J. Geophys. Res., 115, A10210, doi: 10.1029/2010JA015449.en_US
dc.identifier.citedreferenceLyatsky, W. B., G. J. Sofko, A. V. Kustov, D. Andre, W. J. Hughes, and D. Murr ( 1999 ), Traveling convection vortices as seen by the SuperDARN HF radars, J. Geophys. Res., 104 ( A2 ), 2591 – 2601, doi: 10.1029/1998JA900007.en_US
dc.identifier.citedreferenceMcHenry, M. A., C. R. Clauer, E. Friis‐Christensen, and J. D. Kelly ( 1989 ), Observations of ionospheric convection vortices: Signatures of momentum transfer, Adv. Space Res., 8, 315 – 320.en_US
dc.identifier.citedreferenceMiura, A. ( 1984 ), Anomalous transport by magnetohydrodynamic Kelvin‐Helmholtz instabilities in the solar wind‐magnetosphere interaction, J. Geophys. Res., 89, 801 – 818, doi: 10.1029/JA089iA02p00801.en_US
dc.identifier.citedreferenceMotoba, T., T. Kikuchi, T. Okuzawa, and K. Yumoto ( 2003 ), Dynamical response of the magnetosphere‐ionosphere system to a solar wind dynamic pressure oscillation, J. Geophys. Res., 108 ( A5 ), 1206, doi: 10.1029/2002JA009696.en_US
dc.identifier.citedreferenceMurr, D. L., W. J. Hughes, A. S. Rodger, E. Zesta, H. U. Frey, and A. T. Weatherwax ( 2002 ), Conjugate observations of traveling convection vortices: The field‐aligned current system, J. Geophys. Res., 107 ( A10 ), 1306, doi: 10.1029/2002JA009456.en_US
dc.identifier.citedreferenceNedie, A. Z., R. Rankin, and F. R. Fenrich ( 2012 ), SuperDARN observations of the driver wave associated with FLRs, J. Geophys. Res., 117, A06232, doi: 10.1029/2011JA017387.en_US
dc.identifier.citedreferenceRaeder, J., D. Larson, W. H. Li, E. L. Kepko, and T. Fuller‐Rowell ( 2008 ), OpenGGCM simulations for the THEMIS mission, Space Sci. Rev., 141 ( 1–4 ), 535 – 555.en_US
dc.identifier.citedreferenceRickard, G. J., and A. N. Wright ( 1994 ), Alfven resonance excitation and fast wave propagation in magnetospheric waveguides, J. Geophys. Res., 99 ( A7 ), 13,455 – 13,464.en_US
dc.identifier.citedreferenceRickard, G. J., and A. N. Wright ( 1995 ), Ulf pulsations in a magnetospheric waveguide: Comparison of real and simulated satellite data, J. Geophys. Res., 100 ( A3 ), 3531 – 3537.en_US
dc.identifier.citedreferenceSamson, J. C., and G. Rostoker ( 1972 ), Latitude‐dependent characteristics of high‐latitude pc 4 and pc 5 micropulsations, J. Geophys. Res., 77 ( 31 ), 6133 – 6144.en_US
dc.identifier.citedreferenceShi, Q. Q., et al. ( 2013 ), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, 284 – 298, doi: 10.1029/2012JA017984.en_US
dc.identifier.citedreferenceShue, J.‐H., et al. ( 1998 ), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103 ( A8 ), 17,691 – 17,700, doi: 10.1029/98JA01103.en_US
dc.identifier.citedreferenceSibeck, D. G. ( 1990 ), A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations, J. Geophys. Res., 95 ( A4 ), 3755 – 3771, doi: 10.1029/JA095iA04p03755.en_US
dc.identifier.citedreferenceSibeck, D. G., N. B. Trivedi, E. Zesta, R. B. Decker, H. J. Singer, A. Szabo, H. Tachihara, and J. Watermann ( 2003 ), Pressure‐pulse interaction with the magnetosphere and ionosphere, J. Geophys. Res., 108 ( A2 ), 1095, doi: 10.1029/2002JA009675.en_US
dc.identifier.citedreferenceSouthwood, D. ( 1974 ), Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22 ( 3 ), 483 – 491.en_US
dc.identifier.citedreferenceSun, T. R., C. Wang, H. Li, and X. C. Guo ( 2011 ), Nightside geosynchronous magnetic field response to interplanetary shocks: Model results, J. Geophys. Res., 116, A04216, doi: 10.1029/2010JA016074.en_US
dc.identifier.citedreferenceSun, T. R., C. Wang, and Y. Wang ( 2012 ), Different Bz response regions in the nightside magnetosphere after the arrival of an interplanetary shock: Multipoint observations compared with MHD simulations, J. Geophys. Res., 117, A05227, doi: 10.1029/2011JA017303.en_US
dc.identifier.citedreferenceSundkvist, D., V. Krasnoselskikh, P. K. Shukla, A. Vaivads, M. André, S. Buchert, and H. Rème ( 2005 ), In situ multi‐satellite detection of coherent vortices as a manifestation of Alfvénic turbulence, Nature, 436, 825 – 828.en_US
dc.identifier.citedreferenceTian, A. M., Q. G. Zong, Y. F. Wang, Q. Q. Shi, S. Y. Fu, and Z. Y. Pu ( 2010 ), A series of plasma flow vortices in the tail plasma sheet associated with solar wind pressure enhancement, J. Geophys. Res., 115, A09204, doi: 10.1029/2009JA014989.en_US
dc.identifier.citedreferenceWalker, A., J. M. Ruohoniemi, K. Baker, R. Greenwald, and J. Samson ( 1992 ), Spatial and temporal behavior of ulf pulsations observed by the goose bay hf radar, J. Geophys. Res., 97 ( A8 ), 12,187 – 12,202.en_US
dc.identifier.citedreferenceWalker, R. J., M. Ashour‐Abdalla, M. El Alaoui, and F. V. Coroniti ( 2006 ), Magnetospheric convection during prolonged intervals with southward interplanetary magnetic field, J. Geophys. Res., 111, A10219, doi: 10.1029/2005JA011541.en_US
dc.identifier.citedreferenceWang, C., T. R. Sun, X. C. Guo, and J. D. Richardson ( 2010 ), Case study of nightside magnetospheric magnetic field response to interplanetary shocks, J. Geophys. Res., 115, A10247, doi: 10.1029/2010JA015451.en_US
dc.identifier.citedreferenceWaters, C., J. Samson, and E. Donovan ( 1995 ), The temporal variation of the frequency of high latitude field line resonances, J. Geophys. Res., 100 ( A5 ), 7987 – 7996.en_US
dc.identifier.citedreferenceWeygand, J. M., O. Amm, A. Viljanen, V. Angelopoulos, D. Murr, M. J. Engebretson, H. Gleisner, and I. Mann ( 2011 ), Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res., 116, A03305, doi: 10.1029/2010JA016177.en_US
dc.identifier.citedreferenceYahnin, A., and T. Moretto ( 1996 ), Travelling convection vortices in the ionosphere map to the central plasma sheet, Ann. Geophys., 14, 1025 – 1031.en_US
dc.identifier.citedreferenceYahnin, A., and V. Sergeev ( 1996 ), Simultaneous satellite and ground‐based observations of polar cap aurora, Adv. Space Res., 18 ( 8 ), 111 – 114.en_US
dc.identifier.citedreferenceYahnin, A., V. Sergeev, B. Gvozdevsky, and S. Vennerstrem ( 1997 ), Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles, in Annales Geophysicae, vol. 15, pp. 943 – 958, Springer.en_US
dc.identifier.citedreferenceYao, Z. H., et al. ( 2012 ), Mechanism of substorm current wedge formation: THEMIS observations, Geophys. Res. Lett., 39, L13102, doi: 10.1029/2012GL052055.en_US
dc.identifier.citedreferenceAmm, O., M. J. Engebretson, T. Hughes, L. Newitt, A. Viljanen, and J. Watermann ( 2002 ), A traveling convection vortex event study: Instantaneous ionospheric equivalent currents, estimation of field‐aligned currents, and the role of induced currents, J. Geophys. Res., 107 ( A11 ), 1334, doi: 10.1029/2002JA009472.en_US
dc.identifier.citedreferenceBirn, J. M., J. Raeder, Y. L. Wang, R. A. Wolf, and M. Hesse ( 2004 ), On the propagation of bubbles in the magnetotail, Ann. Geophys., 22, 1773 – 1786.en_US
dc.identifier.citedreferenceBurlaga, L. F. ( 1990 ), A heliospheric vortex street?, J. Geophys. Res., 95 ( A4 ), 4333 – 4336, doi: 10.1029/JA095iA04p04333.en_US
dc.identifier.citedreferenceChen, L., and A. Hasegawa ( 1974 ), A theory of long‐period magnetic pulsations: 2. Impulse excitation of surface eigenmode, J. Geophys. Res., 79 ( 7 ), 1033 – 1037.en_US
dc.identifier.citedreferenceClaudepierre, S. G., S. R. Elkington, and M. Wiltberger ( 2008 ), Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause, J. Geophys. Res., 113, A05218, doi: 10.1029/2007JA012890.en_US
dc.identifier.citedreferenceClaudepierre, S. G., M. K. Hudson, W. Lotko, J. G. Lyon, and R. E. Denton ( 2010 ), Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations, J. Geophys. Res., 115, A11202, doi: 10.1029/2010JA015399.en_US
dc.identifier.citedreferenceEl‐Alaoui, M., M. Ashour‐Abdalla, R. J. Walker, V. Peroomian, R. L. Richard, V. Angelopoulos, and A. Runov ( 2009 ), Substorm evolution as revealed by THEMIS satellites and a global MHD simulation, J. Geophys. Res., 114, A08221, doi: 10.1029/2009JA014133.en_US
dc.identifier.citedreferenceEl‐Alaoui, M., M. Ashour‐Abdalla, R. L. Richard, M. L. Goldstein, J. M. Weygand, and R. J. Walker ( 2010 ), Global magnetohydrodynamic simulation of reconnection and turbulence in the plasma sheet, J. Geophys. Res., 115, A12236, doi: 10.1029/2010JA015653.en_US
dc.identifier.citedreferenceFarrugia, C. J., M. P. Freeman, S. W. H. Cowley, D. J. Southwood, M. Lockwood, and A. Etemadi ( 1989 ), Pressure driven magnetopause motions and attendant response on the ground, Planet. Space Sci., 37, 589.en_US
dc.identifier.citedreferenceFriis‐Christensen, E., M. A. McHenry, C. R. Clauer, and S. Vennerstrom ( 1988 ), Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind, Geophys. Res. Lett., 15, 253 – 256, doi: 10.1029/GL015i003p00253.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H. ( 1992 ), Traveling magnetospheric convection twin vortices—Observations and theory, Ann. Geophys., 10, 547 – 565.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H., M. Hönisch, and J. Untiedt ( 1989 ), Ground‐based and satellite observations of traveling magnetospheric convection twin‐vortices, J. Geophys. Res., 94, 2520 – 2528, doi: 10.1029/JA094iA03p02520.en_US
dc.identifier.citedreferenceGoertz, C. K., E. Nielsen, A. Korth, K. H. Glassmeier, C. Haldoupis, P. Hoeg, and D. Hayward ( 1985 ), Observation of a possible ground signature of flux transfer events, J. Geophys. Res., 90, 4069, doi: 10.1029/JA090iA05p04069.en_US
dc.identifier.citedreferenceHasegawa, H., M. Fujimoto, T.‐D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro ( 2004 ), Transport of solar wind into Earth's magnetosphere through rolled‐up Kelvin‐Helmholtz vortices, Nature, 430, 755 – 758.en_US
dc.identifier.citedreferenceHones, E. W., Jr., G. Paschmann, S. J. Bame, J. R. Asbridge, N. Sckopke, and K. Schindler ( 1978 ), Vortices in magnetospheric plasma flow, Geophys. Res. Lett., 5 ( 12 ), 1059 – 1062, doi: 10.1029/GL005i012p01059.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.