Show simple item record

Conservation and redistribution of crust during the Indo‐Asian collision

dc.contributor.authorYakovlev, Petr V.en_US
dc.contributor.authorClark, Marin K.en_US
dc.date.accessioned2014-08-06T16:49:31Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:31Z
dc.date.issued2014-06en_US
dc.identifier.citationYakovlev, Petr V.; Clark, Marin K. (2014). "Conservation and redistribution of crust during the Indo‐Asian collision." Tectonics 33(6): 1016-1027.en_US
dc.identifier.issn0278-7407en_US
dc.identifier.issn1944-9194en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108001
dc.description.abstractWe evaluate the mass balance of the Indo‐Asian orogen by reconstructing the Indian and Asian margins prior to collision using recently published paleomagnetic and surface shortening constraints, and subtracting modern crustal volumes derived from gravity inversions and deep seismic soundings. Results show a ~30% deficit between original and modern orogen volumes if the average global crustal thickness of 41 km is assumed prior to collision, even once eastward extrusion and crustal flow are considered. Such a large discrepancy requires crustal recycling of a magnitude that is greater than one half of the modern orogenic mass, as others have previously suggested. Proposals for extensive high elevations prior to or soon after the collision further exacerbate this mismatch and dramatically increase the volume of material necessary to be placed into the mantle. However, we show that this discrepancy can be eliminated with a 23–29 km thick crust within the orogen prior to collision along with a thick southern Tibet margin (the Lhasa and Qiangtang terranes). Because of the relatively low magnitude of surface shortening in Asia, an initially thin crust would require underplating of Indian crust in southern Tibet and displacement of a highly mobile lower crust to the north and east in order to explain modern crustal thicknesses. The contrast between a proposed thinner Asian interior and older and thicker lithosphere of the North China block may have defined the distal extent of deformation at the time of collision and since. Key Points Thick crust or high elevation in Asia prior to collision leads to mass imbalance A 23–29 km thick crust in India and Asia precollision eliminates mass imbalance Redistribution of mass at depth needed to reconcile shortening and convergenceen_US
dc.publisherGeol. Soc Am.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCrustal Thicknessen_US
dc.subject.otherTibeten_US
dc.subject.otherMass Balanceen_US
dc.subject.otherPlateau Developmenten_US
dc.titleConservation and redistribution of crust during the Indo‐Asian collisionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108001/1/tect20149.pdf
dc.identifier.doi10.1002/2013TC003469en_US
dc.identifier.sourceTectonicsen_US
dc.identifier.citedreferenceRitts, B. D., Y. Yue, S. A. Graham, E. R. Sobel, A. O. Abbink, and D. F. Stockli ( 2008 ), From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan, Am. J. Sci., 308 ( 5 ), 657 – 678, doi: 10.2475/05.2008.01.en_US
dc.identifier.citedreferenceSun, Z., J. Pei, H. Li, W. Xu, W. Jiang, Z. Zhu, X. Wang, and Z. Yang ( 2012 ), Palaeomagnetism of late Cretaceous sediments from southern Tibet: Evidence for the consistent palaeolatitudes of the southern margin of Eurasia prior to the collision with India, Gondwana Res., 21 ( 1 ), 53 – 63, doi: 10.1016/j.gr.2011.08.003.en_US
dc.identifier.citedreferenceTan, X., S. Gilder, K. P. Kodama, W. Jiang, Y. Han, H. Zhang, H. Xu, and D. Zhou ( 2010 ), New paleomagnetic results from the Lhasa block: Revised estimation of latitudinal shortening across Tibet and implications for dating the India–Asia collision, Earth Planet. Sci. Lett., 293 ( 3–4 ), 396 – 404, doi: 10.1016/j.epsl.2010.03.013.en_US
dc.identifier.citedreferenceTapponnier, P., and P. Molnar ( 1979 ), Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions, J. Geophys. Res., 84 ( B7 ), 3425 – 3459, doi: 10.1029/JB084iB07p03425.en_US
dc.identifier.citedreferenceTapponnier, P., G. Peltzer, A. Y. Le Dain, R. Armijo, and P. R. Cobbold ( 1982 ), Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine, Geology, 10 ( 12 ), 611 – 616, doi: 10.1130/0091‐7613(1982)10<611:PETIAN>2.0.CO;2.en_US
dc.identifier.citedreferenceTapponnier, P., X. Zhiqin, F. Roger, B. Meyer, N. O. Arnaud, G. Wittlinger, and Y. Jingsui ( 2001 ), Oblique stepwise rise and growth of the Tibet plateau, Science, 294 ( 5547 ), 1671 – 1677, doi: 10.1126/science.105978.en_US
dc.identifier.citedreferenceVan Hinsbergen, D. J. J., B. Steinberger, P. V. Doubrovine, and R. Gassmöller ( 2011a ), Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, J. Geophys. Res., 116, B06101, doi: 10.1029/2010JB008051.en_US
dc.identifier.citedreferenceVan Hinsbergen, D. J. J., P. Kapp, G. Dupont‐Nivet, P. C. Lippert, P. G. DeCelles, and T. H. Torsvik ( 2011b ), Restoration of Cenozoic deformation in Asia and the size of Greater India, Tectonics, 30, TC5003, doi: 10.1029/2011TC002908.en_US
dc.identifier.citedreferenceVan Hinsbergen, D. J. J., P. C. Lippert, G. Dupont‐Nivet, N. McQuarrie, P. V. Doubrovine, W. Spakman, and T. H. Torsvik ( 2012 ), Greater India Basin hypothesis and a two‐stage Cenozoic collision between India and Asia, Proc. Natl. Acad. Sci. U.S.A., 109 ( 20 ), 7659 – 7664, doi: 10.1073/pnas.1117262109.en_US
dc.identifier.citedreferenceWang, C., Z. Liu, H. Yi, S. Liu, and X. Zhao ( 2002 ), Tertiary crustal shortening and peneplanation in the Hoh Xil region: Implications for the tectonic history of the northern Tibetan Plateau, J. Asian Earth Sci., 20 ( 3 ), 211 – 223, doi: 10.1016/S1367‐9120(01)00051‐7.en_US
dc.identifier.citedreferenceWang, Q., F. McDermott, J. Xu, H. Bellon, and Y. Zhu ( 2005 ), Cenozoic K‐rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower‐crustal melting in an intracontinental setting, Geology, 33 ( 6 ), 465 – 468, doi: 10.1130/G21522.1.en_US
dc.identifier.citedreferenceWilliams, S. E., R. D. Müller, T. C. W. Landgrebe, and J. M. Whittaker ( 2012 ), An open‐source software environment for visualizing and refining plate tectonic reconstructions using high‐resolution geological and geophysical data sets, GSA Today, 22 ( 4/5 ), 4 – 9, doi: 10.1130/GSATG139A.1.en_US
dc.identifier.citedreferenceWu, Z., P. Ye, P. J. Barosh, D. Hu, L. Lu, and Y. Zhang ( 2012 ), Early Cenozoic mega thrusting in the Qiangtang block of the Northern Tibetan Plateau, Acta Geol. Sin. (Engl. Ed.), 86 ( 4 ), 799 – 809, doi: 10.1111/j.1755‐6724.2012.00707.x.en_US
dc.identifier.citedreferenceYin, A., Y.‐Q. Dang, L.‐C. Wang, W.‐M. Jiang, S.‐P. Zhou, X.‐H. Chen, G. E. Gehrels, and M. W. McRivette ( 2008 ), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin, Geol. Soc. Am. Bull., 120 ( 7 ), 813 – 846, doi: 10.1130/B26180.1.en_US
dc.identifier.citedreferenceYin, A., C. S. Dubey, A. A. G. Webb, T. K. Kelty, M. Grove, G. E. Gehrels, and W. P. Burgess ( 2009 ), Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U‐Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India, Geol. Soc. Am. Bull., 122 ( 3–4 ), 336 – 359, doi: 10.1130/B26460.1.en_US
dc.identifier.citedreferenceZhang, Z., Y. Deng, J. Teng, C. Wang, R. Gao, Y. Chen, and W. Fan ( 2011a ), An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings, J. Asian Earth Sci., 40 ( 4 ), 977 – 989, doi: 10.1016/j.jseaes.2010.03.010.en_US
dc.identifier.citedreferenceZhang, Z., L. Yang, J. Teng, and J. Badal ( 2011b ), An overview of the earth crust under China, Earth Sci. Rev., 104 ( 1–3 ), 143 – 166, doi: 10.1016/j.earscirev.2010.10.003.en_US
dc.identifier.citedreferenceZhao, W.‐L., and W. J. Morgan ( 1987 ), Injection of Indian crust into Tibetan lower crust: A two‐dimensional finite element model study, Tectonics, 6 ( 4 ), 489 – 504, doi: 10.1029/TC006i004p00489.en_US
dc.identifier.citedreferenceZheng, D., M. K. Clark, P. Zhang, W. Zheng, and K. A. Farley ( 2010 ), Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau), Geosphere, 6 ( 6 ), 937 – 941, doi: 10.1130/GES00523.1.en_US
dc.identifier.citedreferenceZhou, J., F. Xu, T. Wang, A. Cao, and C. Yin ( 2006 ), Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross‐section restoration and implications for Qinghai–Tibet Plateau tectonics, Earth Planet. Sci. Lett., 243 ( 1–2 ), 195 – 210, doi: 10.1016/j.epsl.2005.11.033.en_US
dc.identifier.citedreferenceZorin, Y. A., M. R. Novoselova, E. K. Turutanov, and V. M. Kozhevnikov ( 1990 ), Structure of the lithosphere of the Mongolian‐Siberian mountainous province, J. Geodyn., 11 ( 4 ), 327 – 342, doi: 10.1016/0264‐3707(90)90015‐M.en_US
dc.identifier.citedreferenceClark, M. K., K. A. Farley, D. Zheng, Z. Wang, and A. R. Duvall ( 2010 ), Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages, Earth Planet. Sci. Lett., 296 ( 1–2 ), 78 – 88, doi: 10.1016/j.epsl.2010.04.051.en_US
dc.identifier.citedreferenceCogne, J.‐P., J. Besse, Y. Chen, and F. Hankard ( 2013 ), A new Late Cretaceous to Present APWP for Asia and its implications for paleomagnetic shallow inclinations in Central Asia and Cenozoic Eurasian plate deformation, Geophys. J. Int., 192 ( 3 ), 1000 – 1024, doi: 10.1093/gji/ggs104.en_US
dc.identifier.citedreferenceCowgill, E. ( 2007 ), Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, Earth Planet. Sci. Lett., 254 ( 3–4 ), 239 – 255, doi: 10.1016/j.epsl.2006.09.015.en_US
dc.identifier.citedreferenceAgius, M. R., and S. Lebedev ( 2013 ), Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface‐wave dispersion, Geochem. Geophys. Geosyst., 14, 4260 – 4281, doi: 10.1002/ggge.20274.en_US
dc.identifier.citedreferenceAhmed, Z., and W. G. Ernst ( 1999 ), Island arc–related, back‐arc basinal, and oceanic‐island components of the Bela Ophiolite‐Mélange Complex, Pakistan, Int. Geol. Rev., 41 ( 8 ), 739 – 763, doi: 10.1080/00206819909465167.en_US
dc.identifier.citedreferenceAitchison, J. C., J. R. Ali, and A. M. Davis ( 2007 ), When and where did India and Asia collide?, J. Geophys. Res., 112, 1 – 19, doi: 10.1029/2006JB004706.en_US
dc.identifier.citedreferenceAli, J. R., and J. C. Aitchison ( 2005 ), Greater India, Earth Sci. Rev., 72 ( 3–4 ), 169 – 188, doi: 10.1016/j.earscirev.2005.07.005.en_US
dc.identifier.citedreferenceAvouac, J.‐P., P. Tapponnier, M. Bai, H. You, and G. Wang ( 1993 ), Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan, J. Geophys. Res., 98 ( B4 ), 6755 – 6804, doi: 10.1029/92JB01963.en_US
dc.identifier.citedreferenceBaljinnyam, I., et al. ( 1993 ), Ruptures of Major Earthquakes and Active Deformation in Mongolia and Its Surroundings, Geol. Soc. Am. Mem., vol. 181, 62 pp., Geol. Soc Am., Boulder, Colo.en_US
dc.identifier.citedreferenceBassin, C., G. Laske, and G. Masters ( 2000 ), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU, 81, F897.en_US
dc.identifier.citedreferenceBershaw, J., S. M. Penny, and C. N. Garzione ( 2012 ), Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate, J. Geophys. Res., 117, D02110, doi: 10.1029/2011JD016132.en_US
dc.identifier.citedreferenceBosboom, R. E., G. Dupont‐Nivet, A. J. P. Houben, H. Brinkhuis, G. Villa, O. Mandic, M. Stoica, W. J. Zachariasse, Z. Guo, and C. Li ( 2011 ), Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change, Palaeogeogr. Palaeoclimatol. Palaeoecol., 299 ( 3–4 ), 385 – 398, doi: 10.1016/j.palaeo.2010.11.019.en_US
dc.identifier.citedreferenceBouilhol, P., O. E. Jagoutz, J. M. Hanchar, and F. O. Dudas ( 2013 ), Dating the India–Eurasia collision through arc magmatic records, Earth Planet. Sci. Lett., 366, 163 – 175, doi: 10.1016/j.epsl.2013.01.023.en_US
dc.identifier.citedreferenceBuck, W. R. ( 2006 ), The role of magma in the development of the Afro‐Arabian rift system, Geol. Soc. London, Spec. Publ., 259 ( 1 ), 43 – 54, doi: 10.1144/GSL.SP.2006.259.01.05.en_US
dc.identifier.citedreferenceBurov, E. B., and A. Watts ( 2006 ), The long‐term strength of continental lithosphere: “Jelly sandwich” or “crème brûlée”?, GSA Today, 16 ( 1 ), 4 – 10, doi: 10.1130/1052‐5173(2006)016<4:TLTSOC>2.0.CO;2.en_US
dc.identifier.citedreferenceBurtman, V. S., and P. Molnar ( 1993 ), Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir, Spec. Pap., vol. 281, 76 pp., Geol. Soc. Am., Boulder, Colo.en_US
dc.identifier.citedreferenceCeylan, S., J. Ni, J. Y. Chen, Q. Zhang, F. Tilmann, and E. Sandvol ( 2012 ), Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet, J. Geophys. Res., 117, B11303, doi: 10.1029/2012JB009210.en_US
dc.identifier.citedreferenceChristensen, N. I., and W. D. Mooney ( 1995 ), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100 ( B6 ), 9761 – 9788, doi: 10.1029/95JB00259.en_US
dc.identifier.citedreferenceClark, M. K. ( 2012 ), Continental collision slowing due to viscous mantle lithosphere rather than topography, Nature, 483 ( 7387 ), 74 – 77, doi: 10.1038/nature10848.en_US
dc.identifier.citedreferenceClark, M. K., and L. H. Royden ( 2000 ), Topographic ooze: Building the eastern margin of Tibet by lower crustal flow, Geology, 28 ( 8 ), 703 – 706, doi: 10.1130/0091‐7613(2000)28<703:TOBTEM>2.0.CO;2.en_US
dc.identifier.citedreferenceClark, M. K., L. H. Royden, K. X. Whipple, B. C. Burchfiel, X. Zhang, and W. Tang ( 2006 ), Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau, J. Geophys. Res., 111, F03002, doi: 10.1029/2005JF000294.en_US
dc.identifier.citedreferenceCunningham, D. ( 2013 ), Mountain building processes in intracontinental oblique deformation belts: Lessons from the Gobi Corridor, Central Asia, J. Struct. Geol., 46, 255 – 282, doi: 10.1016/j.jsg.2012.08.010.en_US
dc.identifier.citedreferenceDavis, M. W., N. J. White, K. F. Priestley, B. J. Baptie, and F. J. Tilmann ( 2012 ), Crustal structure of the British Isles and its epeirogenic consequences, Geophys. J. Int., 190 ( 2 ), 705 – 725, doi: 10.1111/j.1365‐246X.2012.05485.x.en_US
dc.identifier.citedreferenceDeCelles, P. G., D. M. Robinson, and G. Zandt ( 2002 ), Implications of shortening in the Himalayan fold‐thrust belt for uplift of the Tibetan Plateau, Tectonics, 21 ( 6 ), 1062, doi: 10.1029/2001TC001322.en_US
dc.identifier.citedreferenceDe Grave, J., and P. Van den haute ( 2002 ), Denudation and cooling of the Lake Teletskoye Region in the Altai Mountains (South Siberia) as revealed by apatite fission‐track thermochronology, Tectonophysics, 349 ( 1–4 ), 145 – 159, doi: 10.1016/S0040‐1951(02)00051‐3.en_US
dc.identifier.citedreferenceDupont‐Nivet, G., P. C. Lippert, D. J. J. Van Hinsbergen, M. J. M. Meijers, and P. Kapp ( 2010 ), Palaeolatitude and age of the Indo‐Asia collision: Palaeomagnetic constraints, Geophys. J. Int., 182 ( 3 ), 1189 – 1198, doi: 10.1111/j.1365‐246X.2010.04697.x.en_US
dc.identifier.citedreferenceEngland, P., and G. A. Houseman ( 1988 ), The mechanics of the Tibetan Plateau [and Discussion], Philos. Trans. R. Soc. London, Ser. A, 326 ( 1589 ), 301 – 320, doi: 10.1098/rsta.1988.0089.en_US
dc.identifier.citedreferenceGan, W., P. Zhang, Z.‐K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng ( 2007 ), Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements, J. Geophys. Res., 112, B08416, doi: 10.1029/2005JB004120.en_US
dc.identifier.citedreferenceGansser, A. ( 1964 ), Geology of the Himalayas, John Wiley, New York.en_US
dc.identifier.citedreferenceGarzanti, E., and T. Van Haver ( 1988 ), The indus clastics: Forearc basin sedimentation in the Ladakh Himalaya (India), Sediment. Geol., 59 ( 3–4 ), 237 – 249, doi: 10.1016/0037‐0738(88)90078‐4.en_US
dc.identifier.citedreferenceGibbons, A. D., U. Barckhausen, P. van den Bogaard, K. Hoernle, R. Werner, J. M. Whittaker, and R. D. Müller ( 2012 ), Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin, Geochem. Geophys. Geosyst., 13, Q05W13, doi: 10.1029/2011GC003919.en_US
dc.identifier.citedreferenceGlorie, S., J. De Grave, M. M. Buslov, F. I. Zhimulev, M. A. Elburg, and P. Van den haute ( 2012 ), Structural control on Meso‐Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi‐method thermochronometry, Tectonophysics, 544, 75 – 92, doi: 10.1016/j.tecto.2012.03.035.en_US
dc.identifier.citedreferenceHamburger, M. W., D. R. Sarewitz, T. L. Pavlis, G. A. Popandopulo, and G. Sciences ( 1992 ), Structural and seismic evidence for intracontinental subduction in the Peter the First Range, Central Asia, Geol. Soc. Am. Bull., 104 ( 4 ), 397 – 408, doi: 10.1130/0016‐7606(1992)104<0397:SASEFI>2.3.CO;2.en_US
dc.identifier.citedreferenceHetényi, G., R. Cattin, F. Brunet, L. Bollinger, J. Vergne, J. L. Nábělek, and M. Diament ( 2007 ), Density distribution of the India plate beneath the Tibetan plateau: Geophysical and petrological constraints on the kinetics of lower‐crustal eclogitization, Earth Planet. Sci. Lett., 264 ( 1–2 ), 226 – 244, doi: 10.1016/j.epsl.2007.09.036.en_US
dc.identifier.citedreferenceHoke, G. D., J. Liu‐Zeng, M. T. Hren, G. K. Wissink, and C. N. Garzione ( 2014 ), Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene, Earth Planet. Sci. Lett., 394, 270 – 278, doi: 10.1016/j.epsl.2014.03.007.en_US
dc.identifier.citedreferenceHorton, B. K., G. Dupont‐Nivet, J. Zhou, G. L. Waanders, R. F. Butler, and J. Wang ( 2004 ), Mesozoic‐Cenozoic evolution of the Xining‐Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results, J. Geophys. Res., 109, B04402, doi: 10.1029/2003JB002913.en_US
dc.identifier.citedreferenceJackson, J. ( 2002 ), Strength of the continental lithosphere: Time to abandon the jelly sandwich?, GSA Today, 12 ( 9 ), 4 – 10, doi: 10.1130/1052‐5173(2002)012<0004:SOTCLT>2.0.CO;2.en_US
dc.identifier.citedreferenceJagoutz, O. E., J.‐P. Burg, S. Hussain, H. Dawood, T. Pettke, T. Iizuka, and S. Maruyama ( 2009 ), Construction of the granitoid crust of an island arc part I: Geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan), Contrib. Mineral. Petrol., 158 ( 6 ), 739 – 755, doi: 10.1007/s00410‐009‐0408‐3.en_US
dc.identifier.citedreferenceKapp, P., M. A. Murphy, A. Yin, and T. M. Harrison ( 2003 ), Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet, Tectonics, 22 ( 4 ), 1029, doi: 10.1029/2001TC001332.en_US
dc.identifier.citedreferenceKapp, P., A. Yin, T. M. Harrison, and L. Ding ( 2005 ), Cretaceous‐Tertiary shortening, basin development, and volcanism in central Tibet, Geol. Soc. Am. Bull., 117 ( 7 ), 865 – 878, doi: 10.1130/B25595.1.en_US
dc.identifier.citedreferenceKapp, P., P. G. DeCelles, G. E. Gehrels, M. Heizler, and L. Ding ( 2007a ), Geological records of the Lhasa‐Qiangtang and Indo‐Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119 ( 7 ), 917 – 933, doi: 10.1130/B26033.1.en_US
dc.identifier.citedreferenceKapp, P., P. G. DeCelles, A. L. Leier, J. M. Fabijanic, S. He, A. Pullen, G. E. Gehrels, and L. Ding ( 2007b ), The Gangdese retroarc thrust belt revealed, GSA Today, 17 ( 7 ), 4 – 9, doi: 10.1130/GSAT01707A.1.en_US
dc.identifier.citedreferenceLease, R. O., D. W. Burbank, H. Zhang, J. Liu, and D. Yuan ( 2012 ), Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary?, Tectonics, 31, TC3011, doi: 10.1029/2011TC003066.en_US
dc.identifier.citedreferenceLeloup, P. H., R. Lacassin, P. Tapponnier, U. Schärer, D. Zhong, X. Liu, L. Zhang, S. Ji, and P. T. Trinh ( 1995 ), The Ailao Shan‐Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina, Tectonophysics, 251 ( 1–4 ), 3 – 84, doi: 10.1016/0040‐1951(95)00070‐4.en_US
dc.identifier.citedreferenceLeloup, P. H., E. Boutonnet, W. J. Davis, and K. H. Hattori ( 2011 ), Long‐lasting intracontinental strike‐slip faulting: New evidence from the Karakorum shear zone in the Himalayas, Terra Nova, 23, 92 – 99, doi: 10.1111/j.1365‐3121.2011.00988.x.en_US
dc.identifier.citedreferenceLe Pape, F., A. G. Jones, J. Vozar, and W. Wenbo ( 2012 ), Penetration of crustal melt beyond the Kunlun Fault into northern Tibet, Nat. Geosci., 5 ( 5 ), 330 – 335, doi: 10.1038/ngeo1449.en_US
dc.identifier.citedreferenceLe Pichon, X., M. Fournier, and L. Jolivet ( 1992 ), Kinematics, topography, shortening, and extrusion in the India‐Eurasia collision, Tectonics, 11 ( 6 ), 1085 – 1098, doi: 10.1029/92TC01566.en_US
dc.identifier.citedreferenceLi, Y., C. Wang, C. Ma, G. Xu, and X. Zhao ( 2011 ), Balanced cross‐section and crustal shortening analysis in the Tanggula‐Tuotuohe Area, Northern Tibet, J. Earth Sci., 22 ( 1 ), 1 – 10, doi: 10.1007/s12583‐011‐0152‐2.en_US
dc.identifier.citedreferenceLiebke, U., E. Appel, L. Ding, and Q. Zhang ( 2013 ), Age constraints on the India–Asia collision derived from secondary remanences of Tethyan Himalayan sediments from the Tingri area, J. Asian Earth Sci., 62, 329 – 340, doi: 10.1016/j.jseaes.2012.10.012.en_US
dc.identifier.citedreferenceLiu, D., X. Fang, J. Gao, Y. Wang, W. Zhang, Y. Miao, Y. Liu, and Y. Zhang ( 2009 ), Cenozoic stratigraphy deformation history in the Central and Eastern of Qaidam Basin by the balance section restoration and its implication, Acta Geol. Sin., 83 ( 2 ), 359 – 371, doi: 10.1111/j.1755‐6724.2009.00024.x.en_US
dc.identifier.citedreferenceLong, S., N. McQuarrie, T. Tobgay, and D. Grujic ( 2011 ), Geometry and crustal shortening of the Himalayan fold‐thrust belt, eastern and central Bhutan, Geol. Soc. Am. Bull., 123 ( 7–8 ), 1427 – 1447, doi: 10.1130/B30203.1.en_US
dc.identifier.citedreferenceMacpherson, K. A., D. Hidayat, and S. H. Goh ( 2012 ), Receiver function structure beneath four seismic stations in the Sumatra region, J. Asian Earth Sci., 46, 161 – 176, doi: 10.1016/j.jseaes.2011.12.005.en_US
dc.identifier.citedreferenceMechie, J., et al. ( 2011 ), Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide‐angle seismic data, Geophys. J. Int., 188, 385 – 407, doi: 10.1111/j.1365‐246X.2011.05278.x.en_US
dc.identifier.citedreferenceMétivier, F., Y. Gaudemer, P. Tapponnier, and M. Klein ( 2002 ), Mass accumulation rates in Asia during the Cenozoic, Geophys. J. Int., 137 ( 2 ), 280 – 318, doi: 10.1046/j.1365‐246X.1999.00802.x.en_US
dc.identifier.citedreferenceMeyer, B., P. Tapponnier, L. Bourjot, F. Métivier, Y. Gaudemer, G. Peltzer, G. Shunmin, and C. Zhitai ( 1998 ), Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet plateau, Geophys. J. Int., 135 ( 1 ), 1 – 47, doi: 10.1046/j.1365‐246X.1998.00567.x.en_US
dc.identifier.citedreferenceMolnar, P., and J. M. Stock ( 2009 ), Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, 28, TC3001, doi: 10.1029/2008TC002271.en_US
dc.identifier.citedreferenceMolnar, P., P. England, and J. Martinod ( 1993 ), Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 31 ( 4 ), 357 – 396, doi: 10.1029/93RG02030.en_US
dc.identifier.citedreferenceMurphy, M. A., A. Yin, T. M. Harrison, S. B. Durr, Z. Chen, F. J. Ryerson, W. S. F. Kidd, X. Wang, and X. Zhou ( 1997 ), Did the Indo‐Asian collision alone create the Tibetan plateau?, Geology, 25 ( 8 ), 719 – 722, doi: 10.1130/0091‐7613(1997)025<0719:DTIACA>2.3.CO;2.en_US
dc.identifier.citedreferenceNábelek, J., G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, and B.‐S. Huang ( 2009 ), Underplating in the Himalaya‐Tibet collision zone revealed by the Hi‐CLIMB experiment, Science, 325 ( 5946 ), 1371 – 1374, doi: 10.1126/science.1167719.en_US
dc.identifier.citedreferenceQuade, J., D. O. Breecker, M. Daeron, and J. M. Eiler ( 2011 ), The paleoaltimetry of Tibet: An isotopic perspective, Am. J. Sci., 311 ( 2 ), 77 – 115, doi: 10.2475/02.2011.01.en_US
dc.identifier.citedreferenceRen, J., K. Tamaki, S. Li, and Z. Junxia ( 2002 ), Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics, 344 ( 3–4 ), 175 – 205, doi: 10.1016/S0040‐1951(01)00271‐2.en_US
dc.identifier.citedreferenceReplumaz, A., and P. Tapponnier ( 2003 ), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res., 108 ( B6 ), 2285, doi: 10.1029/2001JB000661.en_US
dc.identifier.citedreferenceReplumaz, A., A. M. Negredo, S. Guillot, P. Van der Beek, A. Villaseñor, and P. van Der Beek ( 2010 ), Crustal mass budget and recycling during the India/Asia collision, Tectonophysics, 492 ( 1–4 ), 99 – 107, doi: 10.1016/j.tecto.2010.05.023.en_US
dc.identifier.citedreferenceReuber, I. ( 1986 ), Geometry of accretion and oceanic thrusting of the Spongtang Ophiolite, Ladakh‐Himalaya, Nature, 321 ( 6070 ), 592 – 596, doi: 10.1038/321592a0.en_US
dc.identifier.citedreferenceRobinson, D. M., P. G. DeCelles, and P. Copeland ( 2006 ), Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models, Geol. Soc. Am. Bull., 118 ( 7–8 ), 865 – 885, doi: 10.1130/B25911.1.en_US
dc.identifier.citedreferenceRowley, D. B., and B. S. Currie ( 2006 ), Palaeo‐altimetry of the late Eocene to Miocene Lunpola basin, central Tibet, Nature, 439 ( 7077 ), 677 – 681, doi: 10.1038/nature04506.en_US
dc.identifier.citedreferenceSciunnach, D., and E. Garzanti ( 2012 ), Subsidence history of the Tethys Himalaya, Earth Sci. Rev., 111 ( 1–2 ), 179 – 198, doi: 10.1016/j.earscirev.2011.11.007.en_US
dc.identifier.citedreferenceSpurlin, M. S., A. Yin, B. K. Horton, J. Zhou, and J. Wang ( 2005 ), Structural evolution of the Yushu‐Nangqian region and its relationship to syncollisional igneous activity, east‐central Tibet, Geol. Soc. Am. Bull., 117 ( 9 ), 1293 – 1317, doi: 10.1130/B25572.1.en_US
dc.identifier.citedreferenceSteffen, R., H. Steffen, and G. Jentzsch ( 2011 ), A three‐dimensional Moho depth model for the Tien Shan from EGM2008 gravity data, Tectonics, 30, TC5019, doi: 10.1029/2011TC002886.en_US
dc.identifier.citedreferenceSun, Z., W. Jiang, H. Li, J. Pei, and Z. Zhu ( 2010 ), New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block: Tectonic implications for the collision of India and Asia, Tectonophysics, 490 ( 3–4 ), 257 – 266, doi: 10.1016/j.tecto.2010.05.011.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.