Show simple item record

Exploring the efficacy of different electric field models in driving a model of the plasmasphere

dc.contributor.authorRidley, A. j.en_US
dc.contributor.authorDodger, A. M.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.date.accessioned2014-08-06T16:49:35Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:35Z
dc.date.issued2014-06en_US
dc.identifier.citationRidley, A. j. ; Dodger, A. M.; Liemohn, M. W. (2014). "Exploring the efficacy of different electric field models in driving a model of the plasmasphere." Journal of Geophysical Research: Space Physics 119(6): 4621-4638.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108010
dc.description.abstractThe dynamics of the plasmasphere are strongly controlled by the inner magnetospheric electric field. In order to capture realistically the erosion of the nightside plasmapause and the formation of the drainage plume in a model of the plasmasphere, the electric field must be accurate. This study investigates how well five different electric field models drive the Dynamic Global Core Plasma Model during eight storm periods. The five electric field models are the Volland‐Stern analytic formula with Maynard‐Chen Kp dependence, two versions of the Weimer statistical models (96 and 05), and two versions of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique using magnetometer and DMSP satellite data. Manually extracted plasmapause locations from images taken by the EUV instrument on the Imager for Magnetopause‐to‐Aurora Global Exploration (IMAGE) satellite, as described by Goldstein et al. (2005), were compared to the simulation results throughout the main phase of the eight events. Three methods of calculating the plasmapause were employed to determine the best fit to EUV data, using the maximum gradient, a constant density contour (fit method), and the location in which the modeled density fell significantly below the specified saturation density for the given radial position (saturation method). It was found that the simulations driven by the Weimer (1996) model produced the best fit overall and that the fit and saturation methods worked best for matching the model results to the observations. Key Points The Weimer [1996] model works quite well for driving the plasmasphere A saturation technique for determining the plasmapause location in introduced Plasmapause determined by IMAGE may not be the steepest gradient in densityen_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPlasmasphereen_US
dc.subject.otherElectric Fieldsen_US
dc.subject.otherConvectionen_US
dc.subject.otherIMAGE EUVen_US
dc.titleExploring the efficacy of different electric field models in driving a model of the plasmasphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108010/1/jgra51094.pdf
dc.identifier.doi10.1002/2014JA019836en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSandel, B. R. ( 2011 ), Composition of the plasmasphere and implications for refilling, Geophys. Res. Lett., 38, L14104, doi: 10.1029/2011GL048022.en_US
dc.identifier.citedreferenceRich, F., and M. Hairston ( 1994 ), Large‐scale convection patterns observed by DMSP, J. Geophys. Res., 99, 3827 – 3844.en_US
dc.identifier.citedreferenceRichmond, A., and Y. Kamide ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93, 5741 – 5759.en_US
dc.identifier.citedreferenceRidley, A. ( 2000 ), Estimation of the uncertainty in timing the relationship between magnetospheric and solar wind processes, J. Atmos. Sol. Terr. Phys., 62, 757 – 771.en_US
dc.identifier.citedreferenceRidley, A., and E. Kihn ( 2004 ), Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area, Geophys. Res. Lett., 31, L07801, doi: 10.1029/2003GL019113.en_US
dc.identifier.citedreferenceRoelof, E. C., and A. J. Skinner ( 2000 ), Extraction of ion distributions from magnetospheric ENA and EUV images, Space Sci. Rev., 91, 437 – 459.en_US
dc.identifier.citedreferenceSandel, B. R., J. Goldstein, D. L. Gallagher, and M. Spasojevic ( 2003 ), Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere, Space Sci. Rev., 109, 25 – 46, doi: 10.1023/B:SPAC.0000007511.47727.5b.en_US
dc.identifier.citedreferenceSandel, W. R., R. A. King, W. T. Forrester, D. L. Gallagher, C. C. Curtis, and A. L. Broadfoot ( 2000 ), An overview of image EUV observations of the plasmasphere, Eos Trans. AGU, 81, Fall Meet. Suppl. F1033.en_US
dc.identifier.citedreferenceShprits, Y. Y., R. M. Thorne, R. B. Horne, S. A. Glauert, M. Cartwright, C. T. Russell, D. N. Baker, and S. G. Kanekal ( 2006 ), Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 halloween solar storm, Geophys. Res. Lett., 33, L05104, doi: 10.1029/2005GL024256.en_US
dc.identifier.citedreferenceSojka, J. J., C. E. Rasmussen, and R. W. Schunk ( 1986 ), An interplanetary magnetic field dependent model of the ionospheric convection electric field, J. Geophys. Res., 91 ( A10 ), 11,281 – 11,290, doi: 10.1029/JA091iA10p11281.en_US
dc.identifier.citedreferenceSpasojević, M. ( 2003 ), Global response of the plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 108, 1340, doi: 10.1029/2003JA009987.en_US
dc.identifier.citedreferenceStern, D. ( 1975 ), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80, 595 – 599.en_US
dc.identifier.citedreferenceStone, E., A. Frandsen, R. Mewaldt, E. Christian, D. Margolies, J. Ormes, and F. Snow ( 1998 ), The advanced composition explorer, Space Sci. Rev., 1, 1 – 22, doi: 10.1023/A:1005082526237.en_US
dc.identifier.citedreferenceSummers, D., R. M. Thorne, and F. Xiao ( 1998 ), Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103, 20,487 – 20,500, doi: 10.1029/98JA01740.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceVolland, H. ( 1973 ), A semiempirical model of large‐scale magnetospheric electric fields, J. Geophys. Res., 78, 171 – 180, doi: 10.1029/JA078i001p00171.en_US
dc.identifier.citedreferenceWeimer, D. ( 1996 ), A flexible, IMF dependent model of high‐latitude electric potential having “space weather” applications, Geophys. Res. Lett., 23, 2549 – 2552.en_US
dc.identifier.citedreferenceWeimer, D. ( 2001 ), An improved model of ionospheric electric potentials including substorm perturbations and application to the Geosphace Environment Modeling November 24, 1996, event, J. Geophys. Res., 106, 407 – 416.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.en_US
dc.identifier.citedreferenceYu, Y., A. Ridley, D. Welling, and G. Tóth ( 2010 ), Including gap‐region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations, J. Geophys. Res., 115, A08207, doi: 10.1029/2009JA014869.en_US
dc.identifier.citedreferenceZong, Q. ‐G., X. ‐Z. Zhou, Y. F. Wang, X. Li, P. Song, D. N. Baker, T. A. Fritz, P. W. Daly, M. Dunlop, and A. Pedersen ( 2009 ), Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res., 114, A10204, doi: 10.1029/2009JA014393.en_US
dc.identifier.citedreferenceFoster, J. C. ( 2004 ), Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause, Geophys. Res. Lett., 31, L08809, doi: 10.1029/2004GL020082.en_US
dc.identifier.citedreferenceBekerat, H., R. Schunk, L. Scheirles, and A. Ridley ( 2005 ), Comparison of satellite ion drift velocities with AMIE derived convection patterns, J. Atmos. Sol. Terr. Phys., 67, 1463 – 1479.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2006 ), Effect of plasmaspheric drainage plumes on solar‐wind/magnetosphere coupling, Geophys. Res. Lett., 33, L20101, doi: 10.1029/2006GL026519.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2008 ), A statistical look at plasmaspheric drainage plumes, J. Geophys. Res., 113, A09221, doi: 10.1029/2007JA012994.en_US
dc.identifier.citedreferenceCarpenter, D., and R. R. Anderson ( 1992 ), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097 – 1108.en_US
dc.identifier.citedreferenceCarpenter, D. L. ( 1963 ), Whistler evidence of a ‘knee’ in the magnetospheric ionization density profile, J. Geophys. Res., 68, 1675 – 1682, doi: 10.1029/JZ068i006p01675.en_US
dc.identifier.citedreferenceCarpenter, D. L., and J. Lemaire ( 1997 ), Erosion and recovery of the plasmasphere in the plasmapause region, Space Sci. Rev., 102, 153 – 179, doi: 10.1023/A:1004981919827.en_US
dc.identifier.citedreferenceCarpenter, D. L., and C. G. Park ( 1973 ), On what ionospheric workers should know about the plasmapause‐plasmasphere, Rev. Geophys. Space Phys., 11, 133 – 154, doi: 10.1029/RG011i001p00133.en_US
dc.identifier.citedreferenceDarrouzet, F., et al. ( 2008 ), Plasmaspheric density structures and dynamics: Properties observed by the Cluster and Image missions, Space Sci. Rev., 145, 55 – 106, doi: 10.1007/s11214‐008‐9438‐9.en_US
dc.identifier.citedreferenceDent, Z. C., I. R. Mann, J. Goldstein, F. W. Menk, and L. G. Ozeke ( 2006 ), Plasmaspheric depletion, refilling, and plasmapause dynamics: A coordinated ground‐based and image satellite study, J. Geophys. Res., 111, A03205, doi: 10.1029/2005JA011046.en_US
dc.identifier.citedreferenceFoster, J., J. Holt, R. Musgrove, and D. Evans ( 1986 ), Ionospheric convection associated with discrete levels of particle precipitation, Geophys. Res. Lett., 13, 656 – 659.en_US
dc.identifier.citedreferenceFukushima, N. ( 1969 ), Equivalence in ground geomagneitc effect of Chapman‐Vestine's and Birkland‐Alfven's electric current‐systems for polar magnetic storms, Rep. Ionos. Space Res. Jpn., 23 ( 3 ), 219 – 227.en_US
dc.identifier.citedreferenceGoldstein, J. ( 2003 ), Identifying the plasmapause in IMAGE EUV data using IMAGE RPI in situ steep density gradients, J. Geophys. Res., 108 ( A4 ), 1147, doi: 10.1029/2002JA009475.en_US
dc.identifier.citedreferenceGoldstein, J., B. R. Sandel, W. T. Forrester, M. F. Thomsen, and M. R. Hairston ( 2005 ), Global plasmasphere evolution 22–23 April 2001, J. Geophys. Res., 110, A12218, doi: 10.1029/2005JA011282.en_US
dc.identifier.citedreferenceGrebowsky, J. M. ( 1970 ), Model study of plasmapause motion, J. Geophys. Res., 75, 4329 – 4333, doi: 10.1029/JA075i022p04329.en_US
dc.identifier.citedreferenceGringauz, K. I., V. G. Kurt, V. I. Moroz, and I. S. Shklovskii ( 1961 ), Results of observations of charged particles observed out to R = 100, 000 km, with the aid of charged‐particle traps on Soviet Space Rockets, Soviet Astron., 4, 680.en_US
dc.identifier.citedreferenceHorwitz, J., S. Menteer, J. Turnley, J. Burch, J. Winningham, C. Chappell, J. Craven, L. Frank, and D. Slater ( 1986 ), Plasma boundaries in the inner magnetosphere, J. Geophys. Res., 91, 8861 – 8882.en_US
dc.identifier.citedreferenceHorwitz, J. L., R. H. Comfort, P. G. Richards, M. O. Chandler, C. R. Chappell, P. Anderson, W. B. Hanson, and L. H. Brace ( 1990 ), Plasmasphere‐ionosphere coupling. II—Ion composition measurements at plasmaspheric and ionospheric altitudes and comparison with modeling results, J. Geophys. Res., 95, 7949 – 7959, doi: 10.1029/JA095iA06p07949.en_US
dc.identifier.citedreferenceKennel, C. F., and H. E. Petschek ( 1966 ), Limit on stably trapped particle fluxes, J. Geophys. Res., 71 ( 1 ), 1 – 28.en_US
dc.identifier.citedreferenceKihn, E. A., R. Redmon, A. J. Ridley, and M. R. Hairston ( 2006 ), A statistical comparison of the AMIE derived and DMSP‐SSIES observed high‐latitude ionospheric electric field, J. Geophys. Res., 111, A08303, doi: 10.1029/2005JA011310.en_US
dc.identifier.citedreferenceLemaire, J., and K. Gringauz ( 1998 ), The Earth's Plasmasphere, chap. 4.2, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceLiemohn, M., A. Ridley, D. Gallagher, D. Ober, and J. Kozyra ( 2004 ), Dependence of plasmaspheric morphology on the electric field description during the April 17, 2002 magnetic storm, J. Geophys. Res., 109, A03209, doi: 10.1029/2003JA010304.en_US
dc.identifier.citedreferenceLiemohn, M. W., A. J. Ridley, J. U. Kozyra, D. L. Gallagher, M. F. Thomsen, M. G. Henderson, M. H. Denton, P. C. Brandt, and J. Goldstein ( 2006 ), Analyzing electric field morphology through data‐model comparisons of the Geospace Environment Modeling Inner Magnetosphere/Storm Assessment Challenge events, J. of Geophys. Res., 111, A11S11, doi: 10.1029/2006JA011700.en_US
dc.identifier.citedreferenceLyons, L. R., and R. M. Thorne ( 1973 ), Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78, 2142 – 2149, doi: 10.1029/JA078i013p02142.en_US
dc.identifier.citedreferenceMatsui, H., P. A. Puhl‐Quinn, J. W. Bonnell, C. J. Farrugia, V. K. Jordanova, Y. V. Khotyaintsev, P. ‐A. Lindqvist, E. Georgescu, and R. B. Torbert ( 2010 ), Characteristics of storm time electric fields in the inner magnetosphere derived from Cluster data, J. Geophys. Res., 115, A11215, doi: 10.1029/2010JA015450.en_US
dc.identifier.citedreferenceMaynard, N. C., and A. J. Chen ( 1975 ), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80, 1009 – 1013, doi: 10.1029/JA080i007p01009.en_US
dc.identifier.citedreferenceMoldwin, M. B. ( 1997 ), Outer plasmaspheric plasma properties: What we know from satellite data, Space Sci. Rev., 80, 181 – 198, doi: 10.1023/A:1004921903897.en_US
dc.identifier.citedreferenceMoldwin, M. B., S. Mayerberger, H. K. Rassoul, T. Barnicki, and R. R. Anderson ( 2003a ), Plasmapause response to geomagnetic storms: CRRES results, J. Geophys. Res., 108, 1399, doi: 10.1029/2003JA010187.en_US
dc.identifier.citedreferenceMoldwin, M. B., B. R. Sandel, M. F. Thomsen, and R. C. Elphic ( 2003b ), Quantifying global plasmaspheric images with in situ observations, Space Sci. Rev., 109, 47 – 61, doi: 10.1023/B:SPAC.0000007512.69979.8f.en_US
dc.identifier.citedreferenceObana, Y., G. Murakami, I. Yoshikawa, I. R. Mann, P. J. Chi, and M. B. Moldwin ( 2010 ), Conjunction study of plasmapause location using ground‐based magnetometers, IMAGE‐EUV, and Kaguya‐TEX data, J. Geophys. Res., 115, A06208, doi: 10.1029/2009JA014704.en_US
dc.identifier.citedreferenceOber, D., J. L. Horwitz, and D. L. Gallagher ( 1997 ), Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events, J. Geophys. Res., 102 ( A7 ), 14,595 – 14,602.en_US
dc.identifier.citedreferenceOzeke, L. G., and I. R. Mann ( 2008 ), Energization of radiation belt electrons by ring current ion driven ULF waves, J. Geophys. Res., 113, A02201, doi: 10.1029/2007JA012468.en_US
dc.identifier.citedreferencePierrard, V., G. V. Khazanov, J. Cabrera, and J. Lemaire ( 2008 ), Influence of the convection electric field models on predicted plasmapause positions during magnetic storms, J. Geophys. Res., 113, A08212, doi: 10.1029/2007JA012612.en_US
dc.identifier.citedreferenceRasmussen, C., S. M. Guiter, and S. G. Thomas ( 1993 ), Two‐dimensional model of the plasmasphere: Refilling time constants, Planet. Space Sci., 41, 35 – 43.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.