Show simple item record

Development of a disposable electrode modified with carbonized, graphene‐loaded nanofiber for the detection of dopamine in human serum

dc.contributor.authorEkabutr, Pongpolen_US
dc.contributor.authorSangsanoh, Pakakrongen_US
dc.contributor.authorRattanarat, Poomraten_US
dc.contributor.authorMonroe, Charles W.en_US
dc.contributor.authorChailapakul, Orawonen_US
dc.contributor.authorSupaphol, Pitten_US
dc.date.accessioned2014-08-06T16:49:36Z
dc.date.availableWITHHELD_15_MONTHSen_US
dc.date.available2014-08-06T16:49:36Z
dc.date.issued2014-10-05en_US
dc.identifier.citationEkabutr, Pongpol; Sangsanoh, Pakakrong; Rattanarat, Poomrat; Monroe, Charles W.; Chailapakul, Orawon; Supaphol, Pitt (2014). "Development of a disposable electrode modified with carbonized, graphene‐loaded nanofiber for the detection of dopamine in human serum." Journal of Applied Polymer Science 131(19): n/a-n/a.en_US
dc.identifier.issn0021-8995en_US
dc.identifier.issn1097-4628en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108015
dc.description.abstractA one‐step electrode surface modification is proposed in which a disposable, screen‐printed carbon electrode is functionalized with carbonized, electrospun polyacrylonitrile (PAN)‐loaded graphene (G) nanoparticles to form a composite, CPAN5G‐4x. The electrochemical behavior of the CPAN5G‐4x electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy and X‐ray diffraction were used to characterize the surface morphology and physical properties of the carbonized composite nanofibers before and after modification. The modified electrode was found to be effective for the detection of dopamine (DA) using square‐wave voltammetry (SWV) in the presence of interfering substances such as ascorbic acid and uric acid. With the addition of sodium dodecyl sulfate (SDS) to an optimized solution of phosphate‐buffered saline (PBS) at a pH of 2, the fabricated electrode exhibited enhanced electrocatalytic activity toward the oxidation of DA relative to PBS without SDS at a pH of 7.4. The SWV current displayed a linear response to DA concentrations ranging from 0.5 to 100 μ M , with a limit of detection of 70 n M ( S / N  = 3) and a sensitivity of 1.4258 μA μ M −1 cm −2 . Finally, the CPAN5G‐4x electrode was used to determine DA levels in human serum. The modified electrode can potentially be harnessed for further electrochemical biosensor applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40858.en_US
dc.publisherHanseren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherElectrochemistryen_US
dc.subject.otherElectrospinningen_US
dc.subject.otherFibersen_US
dc.subject.otherGraphene and Fullerenesen_US
dc.subject.otherNanoparticlesen_US
dc.subject.otherNanotubesen_US
dc.subject.otherNanowires and Nanocrystalsen_US
dc.titleDevelopment of a disposable electrode modified with carbonized, graphene‐loaded nanofiber for the detection of dopamine in human serumen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelManagementen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelBusiness and Economicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108015/1/app40858.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108015/2/app40858-sup-0001-suppinfo.pdf
dc.identifier.doi10.1002/app.40858en_US
dc.identifier.sourceJournal of Applied Polymer Scienceen_US
dc.identifier.citedreferenceHou, S.; Kasner, M. L.; Su, S.; Patel, K.; Cuellari, R. J. Phys. Chem. C 2010, 114, 14915.en_US
dc.identifier.citedreferenceWightman, R. M. Science 2006, 311, 1570.en_US
dc.identifier.citedreferenceAtta, N. F.; Galal, A.; El‐Ads, E. H. Electrochim. Acta 2012, 69, 102.en_US
dc.identifier.citedreferenceHuang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. Biosens. Bioelectron. 2014, 52, 277.en_US
dc.identifier.citedreferenceZhao, J.; Yu, Y.; Weng, B.; Zhang, W.; Harris, A. T.; Minett, A. I.; Yue, Z.; Huang, X.‐F.; Chen, J. Electrochem. Commun. 2013, 37, 32.en_US
dc.identifier.citedreferencePing, J.; Wu, J.; Ying, Y. Electrochem. Commun. 2010, 12, 1738.en_US
dc.identifier.citedreferenceKu, S.; Palanisamy, S.; Chen, S.‐M. J. Colloid Interface Sci. 2013, 411, 182.en_US
dc.identifier.citedreferenceAlarcón‐Ángeles, G.; Guix, M.; Silva, W. C.; Ramírez‐Silva, M. T.; Palomar‐Pardavé, M.; Romero‐Romo, M.; Merkoçi, A. Biosens. Bioelectron. 2010, 26, 1768.en_US
dc.identifier.citedreferenceZhu, W.; Chen, T.; Ma, X.; Ma, H.; Chen, S. Colloids Surf. B 2013, 111, 321.en_US
dc.identifier.citedreferenceAlwarappan, S.; Erdem, A.; Liu, C.; Li, C. Z. J. Phys. Chem. C 2009, 113, 8853.en_US
dc.identifier.citedreferenceNataraj, S. K.; Yang, K. S.; Aminabhavi, T. M. Prog. Polym. Sci. 2012, 37, 487.en_US
dc.identifier.citedreferencePatil, S. A.; Chigome, S.; Hägerhäll, C.; Torto, N.; Gorton, L. Bioresour. Technol. 2013, 132, 121.en_US
dc.identifier.citedreferenceMo, J. W.; Ogorevc, B. Anal. Chem. 2001, 73, 1196.en_US
dc.identifier.citedreferenceZheng, J.; Zhou, X. Bioelectrochemistry 2007, 70, 408.en_US
dc.identifier.citedreferenceTong, Y.; Li, Z.; Lu, X.; Yang, L.; Sun, W.; Nie, G.; Wang, Z.; Wang, C. Electrochim. Acta 2013, 95, 12.en_US
dc.identifier.citedreferenceShahrokhian, S.; Zare‐Mehrjardi, H. R. Sens. Actuators B 2007, 121, 530.en_US
dc.identifier.citedreferenceKampalanonwat, P.; Supaphol, P. ACS Appl. Mater. Interfaces 2010, 2, 3619.en_US
dc.identifier.citedreferenceAykut, Y.; Pourdeyhimi, B.; Khan, S. A. J. Appl. Polym. Sci. 2013, 130, 3726.en_US
dc.identifier.citedreferenceDas, S.; Wajid, A. S.; Bhattacharia, S. K.; Wilting, M. D.; Rivero, I. V.; Green, M. J. J. Appl. Polym. Sci. 2013, 128, 4040.en_US
dc.identifier.citedreferenceEkabutr, P.; Chailapakul, O.; Supaphol, P. J. Appl. Polym. Sci. 2013, 130, 3885.en_US
dc.identifier.citedreferenceDiouri, N.; Baitoul, M.; Maaza, M. Nanomaterials 2013, 2013.en_US
dc.identifier.citedreferenceKaracan, İ.; Erdoğan, G. Polym. Eng. Sci. 2012, 52, 937.en_US
dc.identifier.citedreferenceSaha, B.; Schatz, G. C. J. Phys. Chem. B 2012, 116, 4684.en_US
dc.identifier.citedreferenceLiu, B.; Lian, H. T.; Yin, J. F.; Sun, X. Y. Electrochim. Acta 2012, 75, 108.en_US
dc.identifier.citedreferenceHuang, Y.‐L.; Baji, A.; Tien, H.‐W.; Yang, Y.‐K.; Yang, S.‐Y.; Wu, S.‐Y.; Ma, C.‐C. M.; Liu, H.‐Y.; Mai, Y.‐W.; Wang, N.‐H. Carbon 2012, 50, 3473.en_US
dc.identifier.citedreferenceGu, S.‐y.; Wu, Q.‐l.; Ren, J. New Carbon Mater. 2008, 23, 171.en_US
dc.identifier.citedreferenceMolnár, K.; Vas, L. M. Electrospun composite nanofibers and polymer composites. In Synthetic Polymer–Polymer Composites; Bhattacharyya, D., Fakirov, S., Eds.; Hanser, 2012.en_US
dc.identifier.citedreferenceChae, W. C.; Young‐Gwang, K.; Oh, H. K.; Inn‐Kyu, K. Carbon Lett. 2007, 8, 313.en_US
dc.identifier.citedreferenceNjagi, J.; Andreescu, S. Biosens. Bioelectron. 2007, 23, 168.en_US
dc.identifier.citedreferenceAtta, N. F.; Galal, A.; Ahmed, R. A. Bioelectrochemistry 2011, 80, 132.en_US
dc.identifier.citedreferenceChauhan, N.; Narang, J.; Pundir, C. S. Analyst 2011, 136, 1938.en_US
dc.identifier.citedreferenceRodthongkum, N.; Ruecha, N.; Rangkupan, R.; Vachet, R. W.; Chailapakul, O. Anal. Chim. Acta 2013, 804, 84.en_US
dc.identifier.citedreferenceZheng, D.; Ye, J.; Zhang, W. Electroanalysis 2008, 20, 1811.en_US
dc.identifier.citedreferenceSauerbier, A.; Ray Chaudhuri, K. Basal Ganglia 2013, 3, 159.en_US
dc.identifier.citedreferenceZhang, J.; Zhu, L.; Du, J.; Liu, B. Neural Regen. Res. 2007, 2, 18.en_US
dc.identifier.citedreferenceLiu, L.; Li, Q.; Li, N.; Ling, J.; Liu, R.; Wang, Y.; Sun, L.; Chen, X. H.; Bi, K. J. Sep. Sci. 2011, 34, 1198.en_US
dc.identifier.citedreferenceHeinz, A.; Przuntek, H.; Winterer, G.; Pietzcker, A. Nervenarzt 1995, 66, 662.en_US
dc.identifier.citedreferenceVenton, B. J.; Wightman, R. M. Anal. Chem. 2003, 75, 414 A.en_US
dc.identifier.citedreferenceSong, P.; Mabrouk, O. S.; Hershey, N. D.; Kennedy, R. T. Anal. Chem. 2012, 84, 412.en_US
dc.identifier.citedreferenceWallenborg, S. R.; Nyholm, L.; Lunte, C. E. Anal. Chem. 1999, 71, 544.en_US
dc.identifier.citedreferenceHuang, H.; Gao, Y.; Shi, F.; Wang, G.; Shah, S. M.; Su, X. Analyst 2012, 137, 1481.en_US
dc.identifier.citedreferenceKumbhat, S.; Shankaran, D. R.; Kim, S. J.; Gobi, K. V.; Joshi, V.; Miura, N. Biosens. Bioelectron. 2007, 23, 421.en_US
dc.identifier.citedreferenceRattanarat, P.; Dungchai, W.; Siangproh, W.; Chailapakul, O.; Henry, C. S. Anal. Chim. Acta 2012, 744, 1.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.