Show simple item record

Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater

dc.contributor.authorArvidson, R. E.en_US
dc.contributor.authorBellutta, P.en_US
dc.contributor.authorCalef, F.en_US
dc.contributor.authorFraeman, A. A.en_US
dc.contributor.authorGarvin, J. B.en_US
dc.contributor.authorGasnault, O.en_US
dc.contributor.authorGrant, J. A.en_US
dc.contributor.authorGrotzinger, J. P.en_US
dc.contributor.authorHamilton, V. E.en_US
dc.contributor.authorHeverly, M.en_US
dc.contributor.authorIagnemma, K. A.en_US
dc.contributor.authorJohnson, J. R.en_US
dc.contributor.authorLanza, N.en_US
dc.contributor.authorLe Mouélic, S.en_US
dc.contributor.authorMangold, N.en_US
dc.contributor.authorMing, D. W.en_US
dc.contributor.authorMehta, M.en_US
dc.contributor.authorMorris, R. V.en_US
dc.contributor.authorNewsom, H. E.en_US
dc.contributor.authorRennó, N.en_US
dc.contributor.authorRubin, D.en_US
dc.contributor.authorSchieber, J.en_US
dc.contributor.authorSletten, R.en_US
dc.contributor.authorStein, N. T.en_US
dc.contributor.authorThuillier, F.en_US
dc.contributor.authorVasavada, A. R.en_US
dc.contributor.authorVizcaino, J.en_US
dc.contributor.authorWiens, R. C.en_US
dc.date.accessioned2014-08-06T16:49:38Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:38Z
dc.date.issued2014-06en_US
dc.identifier.citationArvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; Iagnemma, K. A.; Johnson, J. R.; Lanza, N.; Le Mouélic, S. ; Mangold, N.; Ming, D. W.; Mehta, M.; Morris, R. V.; Newsom, H. E.; Rennó, N. ; Rubin, D.; Schieber, J.; Sletten, R.; Stein, N. T.; Thuillier, F.; Vasavada, A. R.; Vizcaino, J.; Wiens, R. C. (2014). "Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater." Journal of Geophysical Research: Planets 119(6): 1322-1344.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108017
dc.description.abstractPhysical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover‐based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity‐based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well‐consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard‐packed basaltic sand and dust, with both embedded and surface‐strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement‐like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial‐lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven‐wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel‐surface material shear modulus values. Key Points Curiosity landing site consolidated bedrock covered by packed sand with clasts Curiosity drill site is alluvial‐lacustrine bedrock unit with little soil cover Rover slip/skid dominated by terrain tilt and wheel‐surface material shear modulusen_US
dc.publisherJohn Wileyen_US
dc.subject.otherPhysical Propertiesen_US
dc.subject.otherMarsen_US
dc.subject.otherTerramechanicsen_US
dc.titleTerrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crateren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108017/1/jgre20266.pdf
dc.identifier.doi10.1002/2013JE004605en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceMorris, R. V., D. Golden, D. Ming, T. Shelfer, L. Jorgensen, J. Bell, T. Graff, and A. Mertzman ( 2001 ), Phyllosilicate‐poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust?, J. Geophys. Res., 106 ( E3 ), 5057 – 5083, doi: 10.1029/2000JE001328.en_US
dc.identifier.citedreferenceClark, R. N. ( 1999 ), Chapter 1: Spectroscopy of rocks and minerals, and principles of spectroscopy, in Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, edited by A. N. Rencz, pp. 3 – 58, John Wiley, New York.en_US
dc.identifier.citedreferenceCousin, A., V. Sautter, C. Fabre, S. Maurice, and R. C. Wiens ( 2012 ), Textural and modal analyses of picritic basalts with ChemCam laser‐induced breakdown spectroscopy, J. Geophys. Res., 117, E10002, doi: 10.1029/2012JE004132.en_US
dc.identifier.citedreferenceFergason, R. L., P. R. Christensen, M. P. Golombek, and T. J. Parker ( 2012 ), Surface properties of the Mars Science Laboratory landing sites: Characterization from orbit and predictions, Space Sci. Rev., 170, 739 – 773, doi: 10.1007/s11214‐012‐9891‐3.en_US
dc.identifier.citedreferenceFerguson, D., and A. Stentz ( 2005 ), The Field D* algorithm for improved path planning and replanning in uniform and non‐uniform cost environments, Tech. Rep. CMU‐TR‐RI‐05‐19.en_US
dc.identifier.citedreferenceFox, V. K., R. E. Arvidson, and M. J. Wolff ( 2013 ), Quantifying surface scattering parameters for bright and dark Martian surfaces, Abstract P23F‐1861 presented at 2013 Fall Meeting, AGU.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory Mission and science investigation, Space Sci. Rev., 170, 5 – 56, doi: 10.1007/s11214‐012‐9892‐2.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2014 ), A habitable fluvio‐lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343, doi: 10.1126/science.1242777.en_US
dc.identifier.citedreferenceHamilton, V. E., et al. ( 2014 ), Observations and preliminary science results from the first 100 sols of MSL REMS ground temperature sensor measurements at Gale Crater, J. Geophys. Res. Planets, 119, 745 – 770, doi: 10.1002/2013JE004520.en_US
dc.identifier.citedreferenceHeverly, M., J. Matthews, J. Lin, D. Fuller, M. Maimone, J. Biesiadecki, and J. Leichty ( 2014 ), Traverse performance characterization for the Mars Science Laboratory Rover, J. Field Robotics, 30, 835 – 846, doi: 10.1002/rob.21481.en_US
dc.identifier.citedreferenceHuertas, A., Y. Cheng, and R. Madison ( 2006 ), Passive imaging‐based multi‐cue hazard detection for spacecraft landing, paper presented at the 2006 IEEE Aerospace Conference, Big Sky, Mont., March.en_US
dc.identifier.citedreferenceJohnson, J. J., et al. ( 2014 ), ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Icarus, doi: 10.1016/;icarus.2014.02.028, in press.en_US
dc.identifier.citedreferenceJouglet, D., et al. ( 2007 ), Hydration state of the Martian surface as seen by Mars Express OMEGA I: Analysis of the 3 µm hydration feature, J. Geophys. Res., 112, E08S06, doi: 10.1029/2006JE002846.en_US
dc.identifier.citedreferenceLanza, N. L., et al. ( 2014 ), Understanding the signature of rock coatings in laser‐induced breakdown spectroscopy data, Icarus, doi: 10.1016/j.icarus.2014.05.038, in press.en_US
dc.identifier.citedreferenceLeshin, L., et al. ( 2013 ), Volatile isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341, doi: 10.1126/science.1238937.en_US
dc.identifier.citedreferenceLichtenberg, K. A., et al. ( 2007 ), Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars, J. Geophys. Res., 112, E12S90, doi: 10.1029/2006JE002850.en_US
dc.identifier.citedreferenceMaimone, M., Y. Cheng, and L. Matthies ( 2007 ), Two years of visual odometry on the Mars Exploration Rovers, J. Field Robotics, 24 ( 3 ), 169 – 186, doi: 10.1002/rob.20184.en_US
dc.identifier.citedreferenceMaurice, S., et al. ( 2012 ), The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: Science objectives and mast unit description, Space Sci. Rev., 170, 95 – 166, doi 10.1007/s11214‐012‐9912‐2.en_US
dc.identifier.citedreferenceMcEwen, A., et al. ( 2007 ), Mars reconnaissance orbiter's High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res., 112, E05S02, doi: 10.1029/2005JE002605.en_US
dc.identifier.citedreferenceMehta, M., et al. ( 2011 ), Explosive erosion during the Phoenix landing exposes subsurface water on Mars, Icarus, 211, 172 – 194, doi: 10.1016/j.icarus.2010.10.003.en_US
dc.identifier.citedreferenceMehta, M., A. Sengupta, N. O. Renno, J. W. Van Norman, P. G. Huseman, D. S. Gulick, and M. Pokora ( 2013 ), Thruster plume surface interactions: Applications for spacecraft landings on planetary bodies, AIAA J., 51, 2800 – 2818, doi: 10.2514/1.J052408.en_US
dc.identifier.citedreferenceMeslin, P.‐Y., et al. ( 2013 ), Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars, Science, 341, doi: 10.1126/science.1238670.en_US
dc.identifier.citedreferenceMilliken, R. E., J. F. Mustard, F. Poulet, D. Jouglet, J.‐P. Bibring, B. Gondet, and Y. Langevin ( 2007 ), Hydration state of the Martian surface as seen by Mars Express OMEGA II: H2O content of the surface, J. Geophys. Res., 112, E08S07, doi: 10.1029/2006JE002853.en_US
dc.identifier.citedreferenceMurchie, S. L., et al. ( 2007 ), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO), J. Geophys. Res., 112, E05S03, doi: 10.1029/2006JE002682.en_US
dc.identifier.citedreferencePutzig, N. E., M. Mellon, K. Kretke, and R. E. Arvidson ( 2005 ), Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus, 173, 325 – 341, doi: 10.1016/j.icarus.2004.08.017.en_US
dc.identifier.citedreferenceRusso, R. E. ( 1995 ), Laser‐ablation, Appl. Spectrosc., 49 ( 9 ), A14 – A28.en_US
dc.identifier.citedreferenceSallé, B., P. Mauchien, and S. Maurice ( 2007 ), Laser‐Induced breakdown spectroscopy in open‐path configuration for the analysis of distant objects, Spectrochim. Acta, Part B, 62 ( 8 ), 739 – 768.en_US
dc.identifier.citedreferenceSautter, V. C., et al. ( 2013 ), Igneous mineralogy at Bradbury rise: The first ChemCam campaign, J. Geophys. Res. Planets, 119, 30 – 46, doi: 10.1002/2013JE004472.en_US
dc.identifier.citedreferenceSchieber, J., M. Malin, T. Olson, F. Calef, K. Comeaux, and MSL Science Team ( 2013 ), The final 2 1/2 minutes of terror—What we learned about the MSL landing from the images taken by the MARDI descent imager, 44th Lunar and Planetary Science Conference, abstract #1260.en_US
dc.identifier.citedreferenceSebastián, E., C. Armiens, J. Gómez‐Elvira, M. P. Zorzano, J. Martinez‐Frias, B. Esteban, and M. Ramos ( 2010 ), The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars, Sensors, 10 ( 10 ), 9211 – 9231, doi: 10.3390/s101009211.en_US
dc.identifier.citedreferenceSeelos, K., F. Seelos, S. Murchie, R. Arvidson, and A. Fraeman ( 2013 ), Mosaicked hyperspectral CRISM data: Mineralogic variability of the MSL landing site and possible traverse in Gale Crater, 44th Lunar and Planetary Science Conference, abstract #2814.en_US
dc.identifier.citedreferenceStamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera ( 1988 ), Numerically stable algorithm for discrete‐ordinate‐method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502 – 2509.en_US
dc.identifier.citedreferenceStein, N., R. Arvidson, M. Heverly, R. Lindemann, B. Trease, K. Iagnemma, and C. Senatore ( 2013 ), Validation of Artemis mobility simulations for the Spirit, Opportunity, and Curiosity Mars rovers, Abstract #P51G‐1826 presented at 2013 Fall Meeting, AGU.en_US
dc.identifier.citedreferenceSteltzner, A. D., et al. ( 2010 ), Mars Science Laboratory entry, descent, and landing system overview, 2010, in International Planetary Probe Workshop, Barcelona, Spain, 12 June.en_US
dc.identifier.citedreferenceStolper, E., et al. ( 2013 ), The petrochemistry of Jake_M: A Martian mugearite, Science, 341, doi: 10.1126/science.1239463.en_US
dc.identifier.citedreferenceSullivan, R., R. Anderson, J. Biesiadecki, T. Bond, and H. Stewart ( 2011 ), Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs, J. Geophys. Res., 116, E02006, doi: 10.1029/2010JE003625.en_US
dc.identifier.citedreferenceVadillo, J. M., J. M. Fernandez Romero, C. Rodriguez, and J. J. Laserna ( 1999 ), Effect of plasma shielding on laser ablation rate of pure metals at reduced pressure, Surf. Interface Anal., 27 ( 11 ), 1009 – 1015.en_US
dc.identifier.citedreferenceVaniman, D., et al. ( 2014 ), Mineralogy of a mudstone at Yellowknife Bay Gale Crater, Mars, Science, 343, doi: 10.1126/science.1243480.en_US
dc.identifier.citedreferenceVasavada, A. R., et al. ( 2014 ), Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond, J. Geophys. Res. Planets, 119, doi: 10.1002/2014JE004622, in press.en_US
dc.identifier.citedreferenceWhite, C., et al. ( 2012 ), System verification of MSL Skycrane using an integrated ADAMS simulation, Aerospace Conference, 2012 IEEE March 2012.en_US
dc.identifier.citedreferenceWiens, R., et al. ( 2012 ), The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: Body unit and combined system tests, Space Sci. Rev., 170, 167 – 227, doi: 10.1007/s11214‐012.en_US
dc.identifier.citedreferenceWilliams, R., et al. ( 2013 ), Martian fluvial conglomerates at Gale Crater, Science, 340, 1068 – 1072, doi: 10.1126/science.1237317.en_US
dc.identifier.citedreferenceWong, J. ( 2001 ), Theory of Ground Vehicles, 3rd ed., John Wiley, New York, 9902‐4.en_US
dc.identifier.citedreferenceYingst, R. A., et al. ( 2013 ), Characteristics of pebble and cobble‐sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest, J. Geophys. Res. Planets, 118, 2361 – 2380, doi: 10.1002/2013JE004435.en_US
dc.identifier.citedreferenceZhou, F., R. E. Arvidson, K. Bennett, B. Trease, R. Lindemann, P. Bellutta, K. Iagnemma, and C. Senatore ( 2014 ), Simulations of Mars Rover traverses, J. Field Robotics, 31 ( 1 ), 141 – 160, doi: 10.1002/rob.21483.en_US
dc.identifier.citedreferenceArvidson, R. E., et al. ( 2004 ), Localization and physical properties experiments conducted by Spirit at Gusev Crater, Science, 305 ( 5685 ), 821 – 824, doi: 10.1126/science.1099922.en_US
dc.identifier.citedreferenceArvidson, R. E., et al. ( 2006 ), Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills, J. Geophys. Res., 111, E02S01, doi: 10.1029/2005JE002499.en_US
dc.identifier.citedreferenceArvidson, R. E., et al. ( 2010 ), Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander Crater, J. Geophys. Res., 115, E00F03, doi: 10.1029/2010JE003633.en_US
dc.identifier.citedreferenceArvidson, R. E., et al. ( 2011 ), Opportunity Mars Rover Mission: Overview and selected result from Purgatory Ripple to traverses to Endeavour Crater, J. Geophys. Res., 116, E00F15, doi: 10.1029/2010JE003746.en_US
dc.identifier.citedreferenceArvidson, R. E., et al. ( 2014 ), Ancient aqueous environments at Endeavour Crater, Mars, Science, 343, doi: 10.1126/science.1248097.en_US
dc.identifier.citedreferenceBish, D., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, 341, doi: 10.1126/science.1238932.en_US
dc.identifier.citedreferenceBlake, D., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of Rocknet sand shadow, Science, 341, doi: 10.1126/science.1239505.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2004 ), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110, 85 – 130, doi: 10.1023/B:SPAC.0000021008.16305.94.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.